Skip to main content

Advertisement

Log in

Mind the Gap: Race/Ethnic and Socioeconomic Disparities in Obesity

  • Obesity (J McCaffery, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Race/ethnic and socioeconomic status (SES) disparities in obesity are substantial and may widen in the future. We review nine potential mechanisms that recent research has used to explain obesity disparities. Those nine mechanisms fall into three broad groups—health behaviors, biological factors, and the social environment—which incorporate both proximate and upstream determinants of obesity disparities. Efforts to reduce the prevalence of obesity in the US population and to close race/ethnic and SES disparities in obesity will likely require the use of multifaceted interventions that target multiple mechanisms simultaneously. Unfortunately, relatively few of the mechanisms reviewed herein have been tested in an intervention framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogden CL, Carroll MD, Kit BK, et al. Prevalence of childhood and adult obesity in the United States, 2011-2012. J Am Med Assoc. 2014;311(8):806–14.

    Article  CAS  Google Scholar 

  2. Datar A, Chung PJ. Changes in socioeconomic, racial/ethnic, and sex disparities in childhood obesity at school entry in the United States. JAMA Pediatrics. 2015:E1-E2.

  3. Frederick CB, Snellman K, Putnam RD. Increasing socioeconomic disparities in adolescent obesity. Proc Natl Acad Sci. 2014;11(4):1338–42.

    Article  CAS  Google Scholar 

  4. Preston SH, Stokes A. Contribution of obesity to international differences in life expectancy. Am J Public Health. 2011;101(11):2137–43.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ogden CL, Flegal KM. Changes in terminology for childhood overweight and obesity. Natl Health Stat Rep. 2010;25:1–5.

    Google Scholar 

  6. Krueger PM, Coleman-Minahan K, Rooks RN. Race/ethnicity, nativity, and trends in BMI among U.S. adults. Obesity. 2014;22(7):1739–46.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Reither EN, Hauser RM, Yang Y. Do birth cohorts matter? Age-period-cohort analyses of the obesity epidemic in the United States. Soc Sci Med. 2009;69:1439–48.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wang Y, Beydoun MA. The obesity epidemic in the United States—gender, age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis. Epidemiol Rev. 2007;29:6–28.

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y. Disparities in pediatric obesity in the United States. Adv Nutr. 2011;2:23–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Keith SW, Redden DT, Katzmarzyk PT, et al. Putative contributors to the secular increase in obesity: exploring the road less traveled. Int J Obes. 2006;30:1585–94.

    Article  CAS  Google Scholar 

  11. Link BG, Phelan J. Social conditions as fundamental causes of disease. J Health Soc Behav. 1995; Extra Issue:80-94.

  12. Pampel FC, Krueger PM, Denney JT. Socioeconomic disparities in health behaviors. Annu Rev Sociol. 2010;36:349–70.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Basu S, Seligman H, Winkleby MA. A metabolic-epidemiological microsimulation model to estimate the changes in energy intake and physical activity necessary to meet the Healthy People 2020 obesity objective. Am J Public Health. 2014;104(7):1209–16. This paper uses advanced simulation methods to estimate the necessary change in caloric balance to achieve Healthy People 2020 goals. The paper also discusses implications for disparities in obesity.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Wang YC, Orleans T, Gortmaker SL. Reaching the healthy people goals for reducing childhood obesity: closing the energy gap. Am J Prev Med. 2012;42(5):437–44.

    Article  CAS  PubMed  Google Scholar 

  15. Church TS, Thomas DM, Tudor-Locke C, et al. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS One. 2011;6(5), e19657.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ladabaum U, Mannalithara A, Myer PA, et al. Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010. Am J Med. 2014;127(8):717–27.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Cutler DM, Glaeser EL, Shapiro JM. Why have Americans become more obese? J Econ Perspect. 2003;117(3):93–118.

    Article  Google Scholar 

  18. Saint Onge JM, Krueger PM. Education and race/ethnic differences in types of exercise in the United States. J Health Soc Behav. 2011;52(2):197–211.

    Article  PubMed  Google Scholar 

  19. Turner RW, Perrin EM, Coyne-Beasley T, et al. Reported sports participation, race, sex, ethnicity, and obesity in U.S. adolescents from NHANES physical activity (PAQ_D). Global Pediat Health. 2015;2:1–9.

    Article  Google Scholar 

  20. Austin GL, Krueger PM. Increasing the percentage of energy from dietary sugar, fats, and alcohol in adults is associated with increased energy intake but has minimal association with biomarkers of cardiovascular risk. J Nutr. 2013;14(10):1651–8.

    Article  CAS  Google Scholar 

  21. Bleich SN, Wolfson JA. Trends in SSBs and snack consumption among children by age, body weight, and race/ethnicity. Obesity. 2015;23(5):1039–46.

    Article  PubMed  Google Scholar 

  22. Dodd AH, Briefel R, Cabili C, et al. Disparities in consumption of sugar-sweetened and other beverages by race/ethnicity and obesity status among United States schoolchildren. J Nutr Educ Behav. 2013;45(3):240–9.

    Article  PubMed  Google Scholar 

  23. Kirkpatrick SI, Dodd KW, Reedy J, et al. Income and race/ethnicity are associated with adherence to food-based dietary guidance among US adults and children. J Acad Nutr Diet. 2012;112(5):624–35.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hiza HA, Casavale KO, Guenther PM, et al. Diet quality of Americans differs by age, sex, race/ethnicity, income, and education level. J Acad Nutr Diet. 2013;113(2):297–306.

    Article  PubMed  Google Scholar 

  25. Eisenmann JC, Gundersen C, Lohman BJ, et al. Is food insecurity related to overweight and obesity in children and adolescents? A summary of studies, 1995–2009. Obes Rev. 2011;12(5):e73–83.

    Article  CAS  PubMed  Google Scholar 

  26. Rose D, Bodor JN. Household food insecurity and overweight status in young school children: results from the early childhood longitudinal study. Pediatrics. 2006;117(2):464–73.

    Article  PubMed  Google Scholar 

  27. Liu J, Park Y-MM, Berkowitz SA, et al. Gender differences in the association between food insecurity and insulin resistance among U.S. adults: National Health and Nutrition Examination Survey, 2005–2010. Ann Epidemiol.

  28. Larson NI, Story MT. Food insecurity and weight status among U.S. children and families: a review of the literature. Am J Prev Med. 2011;40(2):166–73.

    Article  PubMed  Google Scholar 

  29. U.S. Department of Health and Human Services. Office of Disese Prevention and Health Promotion. Healthy People 2020. Washington, DC: http://www.healthypeople.gov/2020/; 2013.

  30. Metcalf B, Henley W, Wilkin T. Effectiveness of intervention on physical activity of children: systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54). Br Med J. 2012;345(e5888):1–11.

    Google Scholar 

  31. Ho M, Garnett SP, Baur LA, et al. Impact of dietary and exercise interventions on weight change and metabolic outcomes in obese children and adolescents: a systematic review and meta-analysis of randomized trials. JAMA Pediatrics. 2013;167(8):759–68.

    Article  PubMed  Google Scholar 

  32. Dombrowski SU, Knittle K, Avenell A, et al. Long term maintenance of weight loss with non-surgical interventions in obese adults: systematic review and meta-analyses of randomised controlled trials. Br Med J. 2014;348(g2646):1–12.

    Google Scholar 

  33. Wadden TA, West DS, Neiberg RH, et al. One-year weight losses in the look AHEAD study: factors associated with success. Obesity. 2009;17(4):713–22.

    Article  PubMed Central  PubMed  Google Scholar 

  34. West DS, Prewitt TE, Bursac Z, et al. Weight loss of black, white, and Hispanic men and women in the diabetes prevention program. Obesity. 2008;16(6):1413–20.

    Article  PubMed  Google Scholar 

  35. Spiegel K, Leproult R, L’hermite-Balériaux M, et al. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004;89(11):5762–71.

    Article  CAS  PubMed  Google Scholar 

  36. Morselli L, Leproult R, Balbo M, et al. Role of sleep duration in the regulation of glucose metabolism and appetite. Best Pract Res Clin Encocrinol Metab. 2010;24(5):687–702.

    Article  CAS  Google Scholar 

  37. Beebe DW, Simon S, Summer S, et al. Dietary intake following experimentally restricted sleep in adolescents. Sleep. 2013;36(6):827–34.

    PubMed Central  PubMed  Google Scholar 

  38. Kruger AK, Reither EN, Peppard PE, et al. Do sleep-deprived adolescents make less-healthy food choices? Br J Nutr. 2014;111:1898–904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. McKnight-Eily LR, Eaton DK, Lowry R, et al. Relationship between hours of sleep and health-risk behaviors in US adolescent students. Prev Med. 2011;54(4-5):271–3.

    Article  Google Scholar 

  40. Matricciani LA, Olds TS, Blunden S, et al. Never enough sleep: a brief history of sleep recommendations for children. Pediatrics. 2012;129(3):548–56.

    Article  PubMed  Google Scholar 

  41. Vgontzas AN, Fernandez-Mendoza J, Miksiewicz T, et al. Unveiling the longitudinal association between short sleep duration and the incidence of obesity: the Penn State Cohort. Int J Obes. 2014;38:825–32.

    Article  CAS  Google Scholar 

  42. Mitchell JA, Rodriquez D, Schmitz KH, et al. Sleep duration and adolescent obesity. Pediatrics. 2013;131:e1428–e34.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Marczyk Organek KD, Taylor DJ, Petrie T, et al. Adolescent sleep disparities: sex and racial/ethnic differences. Sleep Health. 2015;1(1):36–9.

    Article  Google Scholar 

  44. Krueger PM, Friedman EM. Sleep duration in the United States: a cross-sectional population based study. Am J Epidemiol. 2009;169(9):1052–63.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Reither EN, Krueger PM, Hale L, et al. Ethnic variation in the association between sleep and body mass among U.S. adolescents. Int J Obes. 2014;38:944–9.

    Article  CAS  Google Scholar 

  46. El-Sheikh M, Bagley EJ, Keiley M, et al. Economic adversity and children’s sleep problems: multiple indicators and moderation of effects. Health Psychol. 2013;32(8):849–59.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Marco CA, Wolfson AR, Sparling M, et al. Family socioeconomic status and sleep patterns of young adolescents. Behav Sleep Med. 2012;10(1):70–80.

    Article  Google Scholar 

  48. Piccolo RS, Yang M, Bliwise DL, et al. Racial and socioeconomic disparities in sleep and chronic disease: results of a longitudinal investigation. Ethn Dis. 2013;23(4):499–507.

    PubMed Central  PubMed  Google Scholar 

  49. Ford ES, Li C, Wheaton AG, et al. Sleep duration and body mass index and waist circumference among U.S. adults. Obesity. 2014;22(2):598–607.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Knutson KL. Association between sleep duration and body size differs among three Hispanic groups. Am J Hum Biol. 2010;23:138–41.

    Article  Google Scholar 

  51. Spaeth AM, Dinges DF, Goel N. Effects of experimental sleep restriction on weight gain, caloric intake, and meal timing in healthy adults. Sleep. 2013;36(7):981–90. This study randomly assigns exposure to short sleep to adults, and demonstrates that the association between short sleep and weight gain varies across race/ethnicity.

    PubMed Central  PubMed  Google Scholar 

  52. Andersen RE, Crespo CJ, Bartlett SJ, et al. Relationship of physical activity and television watching with body weight and level of fatness among children: results from the third national health and nutrition examination survey. JAMA. 1998;279(12):938–42.

    Article  CAS  PubMed  Google Scholar 

  53. Brodersen NH, Steptoe A, Williamson S, et al. Sociodemographic, developmental, environmental, and psychological correlates of physical activity and sedentary behavior at age 11 to 12. Ann Behav Med. 2005;29(1):2–11.

    Article  PubMed  Google Scholar 

  54. Fakhouri TI, Hughes JP, Brody DJ, et al. Physical activity and screen-time viewing among elementary school-aged children in the united states from 2009 to 2010. JAMA Pediat. 2013;167(3):223–9.

    Article  Google Scholar 

  55. Thorp AA, Owen N, Neuhaus M, et al. Sedentary behaviors and subsequent health outcomes in adults: a systematic review of longitudinal studies, 1996–2011. Am J Prev Med. 2011;41(2):207–15.

    Article  PubMed  Google Scholar 

  56. Drescher AA, Goodwin JL, Silva GE, et al. Caffeine and screen time in adolescence: associations with short sleep and obesity. J Clin Sleep Med JCSM Off Pub Am Acad Sleep Med. 2011;7(4):337–42.

    Google Scholar 

  57. Hanson MD, Chen E. Socioeconomic status, race, and body mass index: the mediating role of physical activity and sedentary behaviors during adolescence. J Pediatr Psychol. 2007;32(3):250–9.

    Article  PubMed  Google Scholar 

  58. Tandon P, Zhou C, Sallis JF, et al. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int J Behav Nutr Phys Act. 2012;9(88):1–9.

    Google Scholar 

  59. Singh GK, Kogan MD, Van Dyck PC, et al. Racial/ethnic, socioeconomic, and behavioral determinants of childhood and adolescent obesity in the United States: analyzing independent and joint associations. Ann Epidemiol. 2008;18(9):682–95.

    Article  PubMed  Google Scholar 

  60. Liao Y, Liao J, Durand CP, et al. Which type of sedentary behaviour intervention is more effective at reducing body mass index in children? A meta-analytic review. Obes Rev. 2014;15(3):159–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Shonkoff JP, Boyce W, McEwen BS. Neuroscience, molecular biology, and the childhood roots of health disparities: building a new framework for health promotion and disease prevention. JAMA. 2009;301(21):2252–9.

    Article  CAS  PubMed  Google Scholar 

  62. Dabelea D, Crume T. Maternal environment and the transgenerational cycle of obesity and diabetes. Diabetes. 2011;60(7):1849–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Taveras EM, Gillman MW, Kleinman KP, et al. Reducing racial/ethnic disparities in childhood obesity: the role of early life risk factors. JAMA Pediat. 2013;167(8):731–8. This study uses early life factors, including parental body mass, to explain a substantial share of race/ethnic disparities in BMI.

    Article  Google Scholar 

  64. Russo P, Lauria F, Siani A. Heritability of body weight: moving beyond genetics. Nutr Metab Cardiovasc Dis. 2010;20(10):691–7.

    Article  CAS  PubMed  Google Scholar 

  65. Speakman JR, Westerterp KR. A mathematical model of weight loss under total starvation: evidence against the thrifty-gene hypothesis. Disease Models & Mechan. 2013;6(1):236–51.

    Article  CAS  Google Scholar 

  66. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14:353–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Goonesekera SD, Fang SC, Piccolo RS, et al. Biogeographic ancestry is associated with higher total body adiposity among African-American females: the Boston area community health survey. PLoS One. 2015;10(4), e0122808.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Shook RP, Hand GA, Wang X, et al. Low fitness partially explains resting metabolic rate differences between African American and white women. Am J Med. 2014;127(5):436–42.

    Article  PubMed  Google Scholar 

  69. Arnaiz-Villena A, Fernández-Honrado M, Rey D, et al. Amerindians show association to obesity with adiponectin gene SNP45 and SNP276: population genetics of a food intake control and “thrifty” gene. Mol Biol Rep. 2013;40(2):1819–26.

    Article  CAS  PubMed  Google Scholar 

  70. Reinhard KJ, Johnson KL, LeRoy-Toren S, et al. Understanding the Pathoecological relationship between ancient diet and modern diabetes through coprolite analysis: a case example from antelope cave, Mojave county. Arizona Curr Anthropol. 2012;53(4):506–12.

    Article  Google Scholar 

  71. Kuzawa CW, Sweet E. Epigenetics and the embodiment of race: developmental origins of US racial disparities in cardiovascular health. Am J Hum Biol. 2009;21(1):2–15.

    Article  PubMed  Google Scholar 

  72. Herrera BM, Keildson S, Lindgren CM. Genetics and epigenetics of obesity. Maturitas. 2011;69(1):41–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Soubry A, Schildkraut JM, Murtha A, et al. Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a newborn epigenetics study (NEST) cohort. BMC Med. 2013;11:29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Milagro FI, Mansego ML, De Miguel C, et al. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Asp Med. 2013;34(4):782–812.

    Article  CAS  Google Scholar 

  75. Manikkam M, Tracey R, Guerrero-Bosagna C, et al. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS ONE. 2013;8(1), e55387.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Skinner MK, Manikkam M, Tracey R, et al. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med. 2013;11:228.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Black JL, Mancinko J. Neighborhoods and obesity. Nutr Rev. 2008;66(1):2–20.

    Article  PubMed  Google Scholar 

  78. Boardman JD, Saint Onge JM, Rogers RG, et al. Race differentials in obesity: the impact of place. J Health Soc Behav. 2005;46:229–43.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Iceland J, Wilkes R. Does socioeconomic status matter? Race, class, and residential segregation. Soc Probl. 2006;53(2):248–73.

    Article  Google Scholar 

  80. Karpyn A, Young C, Weiss S. Reestablishing healthy food retail: changing the landscape of food deserts. Child Obesity. 2012;8(1):28–30.

    Google Scholar 

  81. Dutko P, Ver Ploeg M, Farrigan T. Characteristics and infleuntial factors of food deserts, ERR-140. U.S. Department of Agriculture: Economic Research Service; 2012.

  82. Bower KM, Thorpe Jr RJ, Rohde C, et al. The intersection of neighborhood racial segregation, poverty, and urbanicity and its impact on food store availability in the United States. Prev Med. 2014;58:33–9.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Ghosh-Dastidar B, Cohen D, Hunter G, et al. Distance to store, food prices, and obesity in urban food deserts. Am J Prev Med. 2014;47(5):587–95.

    Article  PubMed  Google Scholar 

  84. Lee H. The role of local food availability in explaining obesity risk among young school-aged children. Soc Sci Med. 2012;74(8):1193–203.

    Article  PubMed  Google Scholar 

  85. Shier V, An R, Sturm R. Is there a robust relationship between neighbourhood food environment and childhood obesity in the USA? Public Health. 2012;126(9):723–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Feng J, Glass TA, Curriero FC, et al. The built environment and obesity: a systematic review of the epidemiologic evidence. Health & Place. 2010;16(2):175–90.

    Article  Google Scholar 

  87. Papas MA, Alberg AJ, Ewing R, et al. The built environment and obesity. Epidemiol Rev. 2007;29(1):129–43.

    Article  PubMed  Google Scholar 

  88. Hood E. Dwelling disparities: how poor housing leads to poor health. Environ Health Perspect. 2005;113(5):A310–A7.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Gordon-Larsen P, Nelson MC, Page P, et al. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics. 2006;117(2):417–24.

    Article  PubMed  Google Scholar 

  90. Oreskovic NM, Kuhlthau KA, Romm D, et al. Built environment and weight disparities among children in high- and low-income towns. Acad Pediatr. 2009;9(5):315–21.

    Article  PubMed  Google Scholar 

  91. Sallis JF, Slymen DJ, Conway TL, et al. Income disparities in perceived neighborhood built and social environment attributes. Health & Place. 2011;17(6):1274–83.

    Article  Google Scholar 

  92. Lightfoot K, Blanchard C. Does race or sex moderate the perceived built environment/physical activity relationship in college students? Behav Med. 2011;37(2):54–9.

    Article  PubMed  Google Scholar 

  93. Hsieh S, Klassen AC, Curriero FC, et al. Built environment associations with adiposity parameters among overweight and obese Hispanic youth. Prev Med Rep. 2015;2:406–12.

    Article  PubMed  Google Scholar 

  94. Bodea TD, Garrow LA, Meyer MD, et al. Socio-demographic and built environment influences on the odds of being overweight or obese: the Atlanta experience. Transp Res A Policy Pract. 2009;43(4):430–44.

    Article  Google Scholar 

  95. Muzet A. Environmental noise, sleep and health. Sleep Med Rev. 2007;11(2):135–42.

    Article  PubMed  Google Scholar 

  96. Hale L, Do DP. Racial differences in self-reports of sleep duration in a population-based study. Sleep. 2007;30(9):1096–103.

    PubMed Central  PubMed  Google Scholar 

  97. Hill TD, Burdette AM, Hale L. Neighborhood disorder, sleep quality, and psychological distress: testing a model of structural amplification. Health & Place. 2009;15(4):1006–13.

    Article  Google Scholar 

  98. Steffen PR, Bowden M. Sleep disturbance mediates the relationship between perceived racism and depressive symptoms. Ethn Dis. 2006;16:16–21.

    PubMed  Google Scholar 

  99. Hicken M, Lee H, Ailshire J, et al. “Every shut eye, ain’t sleep”: the role of racism-related vigilance in racial/ethnic disparities in sleep difficulty. Race Soc Probl. 2013;5(2):100–12.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Spilsbury JC, Storfer-Isser A, Kirchner HL, et al. Neighborhood disadvantage as a risk factor for pediatric obstructive sleep apnea. J Pediatr. 2006;149(3):342–7.

    Article  PubMed  Google Scholar 

  101. Ruel E, Reither EN, Robert SA, et al. Neighborhood effects on BMI trends: examining BMI trajectories for black and white women. Health & Place. 2010;16(2):191–8.

    Article  Google Scholar 

  102. Robert SA, Reither EN. A multilevel analysis of race, community disadvantage, and body mass index among adults in the U.S. Soc Sci Med. 2004;59:2421–34.

    Article  PubMed  Google Scholar 

  103. Ludwig J, Sanbonmatsu L, Gennetian L, et al. Neighborhoods, obesity, and diabetes—a randomized social experiment. N Engl J Med. 2011;365(16):1509–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. N Engl J Med. 2007;357(4):370–9.

    Article  CAS  PubMed  Google Scholar 

  105. Cohen-Cole E, Fletcher JM. Is obesity contagious? Social networks vs. environmental factors in the obesity epidemic. J Health Econ. 2008;27(5):1382–7.

    Article  PubMed  Google Scholar 

  106. Schaefer DR, Simpkins SD. Using social network analysis to clarify the role of obesity in selection of adolescent friends. Am J Public Health. 2014;104(7):1223–9.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Ali MM, Amialchuk A, Rizzo JA. The influence of body weight on social network ties among adolescents. Econ Hum Biol. 2012;10(1):20–34.

    PubMed  Google Scholar 

  108. Bahr DB, Browning RC, Wyatt HR, et al. Exploiting social networks to mitigate the obesity epidemic. Obesity. 2009;17(4):723–8.

    Article  PubMed  Google Scholar 

  109. Fletcher A, Bonell C, Sorhaindo A. You are what your friends eat: systematic review of social network analyses of young people’s eating behaviours and bodyweight. J Epidemiol Community Health. 2011.

  110. Kumanyika SK, Wadden TA, Shults J, et al. TRial of family and friend support for weight loss in African American adults. Arch Intern Med. 2009;169(19):1795–804.

    Article  PubMed  Google Scholar 

  111. Gorin A, Phelan S, Tate D, et al. Involving support partners in obesity treatment. J Consult Clin Psychol. 2005;73(2):341–3.

    Article  PubMed  Google Scholar 

  112. Wrotniak BH, Epstein LH, Paluch RA, et al. Parent weight change as a predictor of child weight change in family-based behavioral obesity treatment. Arch Pediatr Adolesc Med. 2004;158(4):342–7.

    Article  PubMed  Google Scholar 

  113. Orr MG, Galea S, Riddle M, et al. Reducing racial disparities in obesity: simulating the effects of improved education and social network influence on diet behavior. Ann Epidemiol. 2014;24(8):563–9. This paper uses simulation methods to document the combined importance of social networks and school context for shaping race/ethnic disparities in obesity.

    Article  PubMed  Google Scholar 

  114. Williams DR, Jackson PB. Social sources of racial disparities in health. Health Aff (Millwood). 2005;24(2):325–34.

    Article  Google Scholar 

  115. Martin M, Beekley A, Kjorstad R, et al. Socioeconomic disparities in eligibility and access to bariatric surgery: a national population-based analysis. Surg Obes Relat Dis. 2010;6(1):8–15.

    Article  PubMed  Google Scholar 

  116. Santry HP, Gillen DL, Lauderdale DS. TRends in bariatric surgical procedures. JAMA. 2005;294(15):1909–17.

    Article  CAS  PubMed  Google Scholar 

  117. Wallace A, Young-Xu Y, Hartley D, et al. Racial, socioeconomic, and rural–urban disparities in obesity-related bariatric surgery. Obes Surg. 2010;20(10):1354–60.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (award number R21DK089414) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development funded University of Colorado Population Center (award number R24HD066613). The National Institutes of Health played no role in the preparation of this manuscript or the decision to submit it for publication. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with Ethics Guidelines

Conflict of Interest

Patrick M. Krueger and Eric N. Reither declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not include human or animal research subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. Krueger.

Additional information

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krueger, P.M., Reither, E.N. Mind the Gap: Race/Ethnic and Socioeconomic Disparities in Obesity. Curr Diab Rep 15, 95 (2015). https://doi.org/10.1007/s11892-015-0666-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0666-6

Keywords

Navigation