Skip to main content

Advertisement

Log in

Effects of Type 1 Diabetes-Associated IFIH1 Polymorphisms on MDA5 Function and Expression

  • Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Recent evidence has highlighted the role of the innate immune system in type 1 diabetes (T1D) pathogenesis. Specifically, aberrant activation of the interferon response prior to seroconversion of T1D-associated autoantibodies supports a role for the interferon response as a precipitating event toward activation of autoimmunity. Melanoma differentiation-associated protein 5 (MDA5), encoded by IFIH1, mediates the innate immune system’s interferon response to certain viral species that form double-stranded RNA (dsRNA), the MDA5 ligand, during their life cycle. Extensive research has associated single nucleotide polymorphisms (SNPs) within the coding region of IFIH1 with T1D. This review discusses the different risk and protective IFIH1 alleles in the context of recent structural and functional analysis that relate to MDA5 regulation of interferon responses. These studies have provided a functional hypothesis for IFIH1 T1D-associated SNPs’ effects on MDA5-mediated interferon responses as well as supporting the genome-wide association (GWA) studies that first associated IFIH1 with T1D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Campbell-Thompson ML, Atkinson MA, Butler AE, Chapman NM, Frisk G, Gianani R, et al. The diagnosis of insulitis in human type 1 diabetes. Diabetologia. 2013;56:2541–3.

    Article  CAS  PubMed  Google Scholar 

  3. In’t Veld P. Insulitis in human type 1 diabetes: the quest for an elusive lesion. Islets. 2011;3:131–8.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Todd JA. Etiology of type 1 diabetes. Immunity. 2010;32:457–67.

    Article  CAS  PubMed  Google Scholar 

  5. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Santin I, Eizirik DL. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β-cell apoptosis. Diabetes Obes Metab. 2013;15 Suppl 3:71–81.

    Article  CAS  PubMed  Google Scholar 

  7. Fourlanos S, Varney MD, Tait BD, Morahan G, Honeyman MC, Colman PG, et al. The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care. 2008;31:1546–9.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Gillespie KM, Bain SC, Barnett AH, Bingley PJ, Christie MR, Gill GV, et al. The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Lancet. 2004;364:1699–700.

    Article  PubMed  Google Scholar 

  9. Kallionpää H, Elo LL, Laajala E, Mykkänen J, Ricaño-Ponce I, Vaarma M, et al. Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility. Diabetes. 2014;63:2402–14. Provide strong evidence for the role of a genetically-controlled innate immune response in pre-disposing to β cell autoimmunity.

    Article  PubMed  Google Scholar 

  10. Ferreira RC, Guo H, Coulson RM, Smyth DJ, Pekalski ML, Burren OS, et al. A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes. 2014;63:2538–50. Provide strong evidence for the role of a genetically-controlled innate immune response in pre-disposing to β cell autoimmunity.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Yoneyama M, Onomoto K, Jogi M, Akaboshi T, Fujita T. Viral RNA detection by RIG-I-like receptors. Curr Opin Immunol. 2015;32:48–53.

    Article  CAS  PubMed  Google Scholar 

  12. Smyth DJ, Cooper JD, Bailey R, Field S, Burren O, Smink LJ, et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet. 2006;38:617–9.

    Article  CAS  PubMed  Google Scholar 

  13. Jermendy A, Szatmári I, Laine AP, Lukács K, Horváth KH, Körner A, et al. The interferon-induced helicase IFIH1 Ala946Thr polymorphism is associated with type 1 diabetes in both the high-incidence Finnish and the medium-incidence Hungarian populations. Diabetologia. 2010;53:98–102.

    Article  CAS  PubMed  Google Scholar 

  14. Liu S, Wang H, Jin Y, Podolsky R, Reddy MV, Pedersen J, et al. IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum Mol Genet. 2009;18:358–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Colli ML, Moore F, Gurzov EN, Ortis F, Eizirik DL. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet. 2010;19:135–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324:387–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Downes K, Pekalski M, Angus KL, Hardy M, Nutland S, Smyth DJ, Walker NM, Wallace C, Todd JA. Reduced expression of IFIH1 is protective for type 1 diabetes. PLoS One. 2010;5:e12646, 1–6.

  18. Zurawek M, Fichna M, Fichna P, Skowronska B, Dzikiewicz-Krawczyk A, Januszkiewicz D, et al. Cumulative effect of IFIH1 variants and increased gene expression associated with type 1 diabetes. Diabetes Res Clin Pract. 2015;107:259–66.

    Article  CAS  PubMed  Google Scholar 

  19. Crow MK. Type I interferon in organ-targeted autoimmune and inflammatory diseases. Arthritis Res Ther. 2010;12 Suppl 1:S5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Laidlaw SM, Dustin LB. Interferon lambda: opportunities, risks, and uncertainties in the fight against HCV. Front Immunol. 2014;5:545.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hermant P, Michiels T. Interferon-λ in the context of viral infections: production, response and therapeutic implications. J Innate Immun. 2014;6:563–74.

    Article  CAS  PubMed  Google Scholar 

  22. Ylipaasto P, Smura T, Gopalacharyulu P, Paananen A, Seppänen-Laakso T, Kaijalainen S, et al. Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction. Diabetologia. 2012;55:3273–83.

    Article  CAS  PubMed  Google Scholar 

  23. Lind K, Richardson SJ, Leete P, Morgan NG, Korsgren O, Flodström-Tullberg M. Induction of an antiviral state and attenuated coxsackievirus replication in type III interferon-treated primary human pancreatic islets. J Virol. 2013;87:7646–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yeung WC, Rawlinson WD, Craig ME. Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ. 2011;342:d35.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Rodriguez-Calvo T, von Herrath MG. Enterovirus infection and type 1 diabetes: closing in on a link? Diabetes. 2015;64:1503–5.

    Article  CAS  PubMed  Google Scholar 

  26. Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell. 2013;152:276–89. Provide high-resolution detail of the structure and function of MDA5.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng J, Yong HY, Panutdaporn N, Liu C, Tang K, Luo D. High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Res. 2015;43:1216–30. Provide high-resolution detail of the structure and function of MDA5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Berke IC, Modis Y. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J. 2012;31:1714–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Peisley A, Lin C, Wu B, Orme-Johnson M, Liu M, Walz T, et al. Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc Natl Acad Sci U S A. 2011;108:21010–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Peisley A, Jo MH, Lin C, Wu B, Orme-Johnson M, Walz T, et al. Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments. Proc Natl Acad Sci U S A. 2012;109:E3340–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med. 2008;205:1601–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell. 2011;146:448–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Takamatsu S, Onoguchi K, Onomoto K, Narita R, Takahasi K, Ishidate F, et al. Functional characterization of domains of IPS-1 using an inducible oligomerization system. PLoS One. 2013;8:e53578.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Iversen MB, Ank N, Melchjorsen J, Paludan SR. Expression of type III interferon (IFN) in the vaginal mucosa is mediated primarily by dendritic cells and displays stronger dependence on NF-kappaB than type I IFNs. J Virol. 2010;84:4579–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, et al. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol. 2014;15:717–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wies E, Wang MK, Maharaj NP, Chen K, Zhou S, Finberg RW, et al. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity. 2013;38:437–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Jiang X, Kinch LN, Brautigam CA, Chen X, Du F, Grishin NV, et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity. 2012;36:959–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature. 2007;446:916–20.

    Article  CAS  PubMed  Google Scholar 

  39. Gack MU, Nistal-Villán E, Inn KS, García-Sastre A, Jung JU. Phosphorylation-mediated negative regulation of RIG-I antiviral activity. J Virol. 2010;84:3220–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Fu J, Xiong Y, Xu Y, Cheng G, Tang H. MDA5 is SUMOylated by PIAS2β in the upregulation of type I interferon signaling. Mol Immunol. 2011;48:415–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Bruns AM, Leser GP, Lamb RA, Horvath CM. The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly. Mol Cell. 2014;55:771–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Mühlbauer E, Bazwinsky I, Wolgast S, Klemenz A, Peschke E. Circadian changes of ether-a-go-go-related-gene (Erg) potassium channel transcripts in the rat pancreas and beta-cell. Cell Mol Life Sci. 2007;64:768–80.

    Article  PubMed  Google Scholar 

  43. Blodgett DM, Nowosielska A, Afik S, Pechhold S, Cura AJ, Kennedy NJ, et al. Novel Observations from Next Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets. Diabetes. 2015;64(9):3172–81.

    CAS  PubMed  Google Scholar 

  44. Boyhan A, Casimir CM, French JK, Teahan CG, Segal AW. Molecular cloning and characterization of grancalcin, a novel EF-hand calcium-binding protein abundant in neutrophils and monocytes. J Biol Chem. 1992;267:2928–33.

    CAS  PubMed  Google Scholar 

  45. Fassnacht M, Lee J, Milazzo C, Boczkowski D, Su Z, Nair S, et al. Induction of CD4(+) and CD8(+) T-cell responses to the human stromal antigen, fibroblast activation protein: implication for cancer immunotherapy. Clin Cancer Res. 2005;11:5566–71.

    Article  CAS  PubMed  Google Scholar 

  46. Aminkeng F, Van Autreve JE, Weets I, Quartier E, Van Schravendijk C, Gorus FK, et al. IFIH1 gene polymorphisms in type 1 diabetes: genetic association analysis and genotype-phenotype correlation in the Belgian population. Hum Immunol. 2009;70:706–10.

    Article  CAS  PubMed  Google Scholar 

  47. Winkler C, Lauber C, Adler K, Grallert H, Illig T, Ziegler AG, et al. An interferon-induced helicase (IFIH1) gene polymorphism associates with different rates of progression from autoimmunity to type 1 diabetes. Diabetes. 2011;60:685–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Yin X, Low HQ, Wang L, Li Y, Ellinghaus E, Han J, et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat Commun. 2015;6:6916.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Rice GI, del Toro DY, Jenkinson EM, Forte GM, Anderson BH, Ariaudo G, et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet. 2014;46:503–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Qu HQ, Marchand L, Grabs R, Polychronakos C. The association between the IFIH1 locus and type 1 diabetes. Diabetologia. 2008;51:473–5.

    Article  CAS  PubMed  Google Scholar 

  51. Concannon P, Onengut-Gumuscu S, Todd JA, Smyth DJ, Pociot F, Bergholdt R, et al. A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes. 2008;57:2858–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Molineros JE, Maiti AK, Sun C, Looger LL, Han S, Kim-Howard X, et al. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet. 2013;9:e1003222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bamming D, Horvath CM. Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2. J Biol Chem. 2009;284:9700–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Funabiki M, Kato H, Miyachi Y, Toki H, Motegi H, Inoue M, et al. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity. 2014;40:199–212. Provides important structural and functional data to our understanding of the effects of gain of function polymorphisms within IFIH1 , in particular A946T.

  55. Zouk H, Marchand L, Polychronakos C. Study of transcriptional effects in Cis at the IFIH1 locus. PLoS One. 2010;5:e11564.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Zouk H, Marchand L, Li Q, Polychronakos C. Functional characterization of the Thr946Ala SNP at the type 1 diabetes IFIH1 locus. Autoimmunity. 2014;47:40–5.

    Article  CAS  PubMed  Google Scholar 

  57. Robinson T, Kariuki SN, Franek BS, Kumabe M, Kumar AA, Badaracco M, et al. Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-α and serologic autoimmunity in lupus patients. J Immunol. 2011;187:1298–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Sheikh F, Dickensheets H, Gamero AM, Vogel SN, Donnelly RP. An essential role for IFN-β in the induction of IFN-stimulated gene expression by LPS in macrophages. J Leukoc Biol. 2014;96:591–600.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Cheng G, Wang LC, Fridlender ZG, Cheng GS, Chen B, Mangalmurti NS, et al. Pharmacologic activation of the innate immune system to prevent respiratory viral infections. Am J Respir Cell Mol Biol. 2011;45:480–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Ng CT, Sullivan BM, Teijaro JR, Lee AM, Welch M, Rice S, et al. Blockade of interferon Beta, but not interferon alpha, signaling controls persistent viral infection. Cell Host Microbe. 2015;17:653–61.

    Article  CAS  PubMed  Google Scholar 

  61. Lincez PJ, Shanina I, Horwitz MS. Reduced expression of the MDA5 gene IFIH1 prevents autoimmune diabetes. Diabetes. 2015;64(6):2184–93. Provide an excellent mouse model of reduced expression of T1D-associated IFIH1 polymorphisms on the pathogenesis of Type 1 Diabetes.

  62. Chistiakov DA, Voronova NV, Savost’Anov KV, Turakulov RI. Loss-of-function mutations E6 27X and I923V of IFIH1 are associated with lower poly(I:C)-induced interferon-β production in peripheral blood mononuclear cells of type 1 diabetes patients. Hum Immunol. 2010;71:1128–34.

    Article  CAS  PubMed  Google Scholar 

  63. Shigemoto T, Kageyama M, Hirai R, Zheng J, Yoneyama M, Fujita T. Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes. J Biol Chem. 2009;284:13348–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Yao H, Dittmann M, Peisley A, Hoffmann HH, Gilmore RH, Schmidt T, et al. ATP-dependent effector-like functions of RIG-I-like receptors. Mol Cell. 2015;58:541–8.

    Article  CAS  PubMed  Google Scholar 

  65. Tracy S, Smithee S, Alhazmi A, Chapman N. Coxsackievirus can persist in murine pancreas by deletion of 5′ terminal genomic sequences. J Med Virol. 2015;87:240–7.

    Article  CAS  PubMed  Google Scholar 

  66. Trumpp A, Essers M, Wilson A. Awakening dormant haematopoietic stem cells. Nat Rev Immunol. 2010;10:201–9.

    Article  CAS  PubMed  Google Scholar 

  67. Badr BM, Moustafa NA, Eldien HM, Mohamed AO, Ibrahim HM, El-Elaimy IA, et al. Increased levels of type 1 interferon in a type 1 diabetic mouse model induce the elimination of B cells from the periphery by apoptosis and increase their retention in the spleen. Cell Physiol Biochem. 2015;35:137–47.

    Article  CAS  PubMed  Google Scholar 

  68. Xia CQ, Peng R, Chernatynskaya AV, Yuan L, Carter C, Valentine J, et al. Increased IFN-α-producing plasmacytoid dendritic cells (pDCs) in human Th1-mediated type 1 diabetes: pDCs augment Th1 responses through IFN-α production. J Immunol. 2014;193:1024–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Phipps-Yonas H, Seto J, Sealfon SC, Moran TM, Fernandez-Sesma A. Interferon-beta pretreatment of conventional and plasmacytoid human dendritic cells enhances their activation by influenza virus. PLoS Pathog. 2008;4:e1000193.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grant PO1 A142288.

Compliance with Ethics Guidelines

Conflict of Interest

Benjamin M. Looney, Chang-Qing Xia, Patrick Concannon, David A. Ostrov, and Michael J. Clare-Salzler declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Clare-Salzler.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Looney, B.M., Xia, CQ., Concannon, P. et al. Effects of Type 1 Diabetes-Associated IFIH1 Polymorphisms on MDA5 Function and Expression. Curr Diab Rep 15, 96 (2015). https://doi.org/10.1007/s11892-015-0656-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0656-8

Keywords

Navigation