Advertisement

Current Diabetes Reports

, 15:76 | Cite as

Beta Cell Function and the Nutritional State: Dietary Factors that Influence Insulin Secretion

  • William T. Moore
  • Suzanne M. Bowser
  • Dane W. Fausnacht
  • Linda L. Staley
  • Kyung-Shin Suh
  • Dongmin LiuEmail author
Lifestyle Management to Reduce Diabetes\/Cardiovascular Risk (E Mayer-Davis and C Shay, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Lifestyle Management to Reduce Diabetes/Cardiovascular Risk

Abstract

Approximately 366 million people worldwide have been diagnosed with type-2 diabetes (T2D). Chronic insulin resistance, decreased functional β-cell mass, and elevated blood glucose are defining characteristics of T2D. Great advances have been made in understanding the pathogenesis of T2D with respect to the effects of dietary macronutrient composition and energy intake on β-cell physiology and glucose homeostasis. It has been further established that obesity is a leading pathogenic factor for developing insulin resistance. However, insulin resistance may not progress to T2D unless β-cells are unable to secret an adequate amount of insulin to compensate for decreased insulin sensitivity. Therefore, pancreatic β-cell dysfunction plays an important role in the development of overt diabetes. This paper reviews recent research findings on the effects of several micronutrients (zinc, vitamin D, iron, vitamin A), leucine, and the phytochemical, genistein on pancreatic β-cell physiology with emphasis on their effects on insulin secretion, specifically in the context of T2D.

Keywords

Insulin secretion Zinc Vitamin D Iron Vitamin A Genistein 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012;27:269–73.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Westerhaus B, Gosmanov AR, Umpierrez GE. Diabetes prevention: can insulin secretagogues do the job? Prim Care Diabetes. 2011;5:73–80.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9:25–53.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic beta-cell function. Food Funct. 2013;4:200–12.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Fu Z, Liu D. Long-term exposure to genistein improves insulin secretory function of pancreatic beta-cells. Eur J Pharmacol. 2009;616:321–7.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Poitout V, Hagman D, Stein R, et al. Regulation of the insulin gene by glucose and fatty acids. J Nutr. 2006;136:873–6.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Suckale J, Solimena M. Pancreas islets in metabolic signaling—focus on the beta-cell. Front Biosci. 2008;13:7156–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Schmitz O, Runby J, Edge L, et al. On high frequency insulin oscillations. Ageing Res Rev. 2008;7:301–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Chandra R, Liddle RA. Modulation of pancreatic exocrine and endocrine secretion. Curr Opin Gastroenterol. 2013;29:517–22.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Newsholme P, Bender K, Kiely A, et al. Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans. 2007;35:1180–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Nolan CJ, Madiraju MS, Delghingaro-Augusto V, et al. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes. 2006;55 Suppl 2:S16–23.PubMedCrossRefGoogle Scholar
  12. 12.
    van Loon LJ, Kruijshoop M, Menheere PP, et al. Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care. 2003;26:625–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Longo DL, Kasper DL, Jameson JL, et al. Harrison’s principles of internal medicine. 18th ed. USA: McGraw-Hill Companies, Inc.; 2012.Google Scholar
  14. 14.
    El-Azzouny M, Evans CR, Treutelaar MK, et al. Increased glucose metabolism and glycerolipid formation by fatty acids and GPR40 receptor signaling underlies the fatty acid potentiation of insulin secretion. J Biol Chem. 2014;289:13575–88.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ito K, Moriguchi R, Yamada Y, et al. High saturated fatty acid intake induces insulin secretion by elevating gastric inhibitory polypeptide levels in healthy individuals. Nutr Res. 2014;34:653–60.CrossRefGoogle Scholar
  16. 16.
    Kim HS, Hwang YC, Koo SH, et al. PPAR-gamma activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic beta-cells. PLoS One. 2013;8, e50128.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Schulz N, Kluth O, Jastroch M, et al. Minor role of mitochondrial respiration for fatty-acid induced insulin secretion. Int J Mol Sci. 2013;14:18989–98.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Wagner R, Hieronimus A, Lamprinou A, et al. Peroxisome proliferator-activated receptor gamma (PPARG) modulates free fatty acid receptor (FFAR1) dependent insulin secretion in humans. Mol Metab. 2014;3:676–80.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Wagner R, Kaiser G, Gerst F, et al. Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans. Diabetes. 2013;62:2106–11.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Wu LE, Samocha-Bonet D, Whitworth PT, et al. Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity. Mol Metab. 2014;3:465–73.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Peschke E, Muhlbauer E, Musshoff U, et al. Receptor (MT(1)) mediated influence of melatonin on cAMP concentration and insulin secretion of rat insulinoma cells INS-1. J Pineal Res. 2002;33:63–71.PubMedCrossRefGoogle Scholar
  22. 22.
    Ahren B, Havel PJ. Leptin inhibits insulin secretion induced by cellular cAMP in a pancreatic B cell line (INS-1 cells). Am J Physiol. 1999;277:R959–66.PubMedGoogle Scholar
  23. 23.
    Sharma G, Prossnitz ER. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells. Endocrinology. 2011;152:3030–9.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Zhang F, Sjoholm A, Zhang Q. Attenuation of insulin secretion by insulin-like growth factor binding protein-1 in pancreatic beta-cells. Biochem Biophys Res Commun. 2007;362:152–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Kjems LL, Holst JJ, Volund A, et al. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes. 2003;52:380–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Hou JC, Min L, Pessin JE. Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm. 2009;80:473–506.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hagstrom E, Hellman P, Lundgren E, et al. Serum calcium is independently associated with insulin sensitivity measured with euglycaemic-hyperinsulinaemic clamp in a community-based cohort. Diabetologia. 2007;50:317–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Priel T, Aricha-Tamir B, Sekler I. Clioquinol attenuates zinc-dependent beta-cell death and the onset of insulitis and hyperglycemia associated with experimental type I diabetes in mice. Eur J Pharmacol. 2007;565:232–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Nicolson TJ, Bellomo EA, Wijesekara N, et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009;58:2070–83.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Dunn MF. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer—a review. Biometals. 2005;18:295–303.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhu X, Orci L, Carroll R, et al. Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc Natl Acad Sci U S A. 2002;99:10299–304.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Gavrilova J, Tougu V, Palumaa P. Affinity of zinc and copper ions for insulin monomers. Metallomics. 2014;6:1296–300.PubMedCrossRefGoogle Scholar
  33. 33.
    Foster MC, Leapman RD, Li MX, et al. Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys J. 1993;64:525–32.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Nygaard SB, Larsen A, Knuhtsen A, et al. Effects of zinc supplementation and zinc chelation on in vitro beta-cell function in INS-1E cells. BMC Res Notes. 2014;7:84.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Slepchenko KG, James CB, Li YV. Inhibitory effect of zinc on glucose-stimulated zinc/insulin secretion in an insulin-secreting beta-cell line. Exp Physiol. 2013;98:1301–11.PubMedCrossRefGoogle Scholar
  36. 36.
    Robertson RP, Zhou H, Slucca M. A role for zinc in pancreatic islet beta-cell cross-talk with the alpha-cell during hypoglycaemia. Diabetes Obes Metab. 2011;13 Suppl 1:106–11.PubMedCrossRefGoogle Scholar
  37. 37.
    Chimienti F, Devergnas S, Favier A, et al. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes. 2004;53:2330–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Lemaire K, Ravier MA, Schraenen A, et al. Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci U S A. 2009;106:14872–7.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Wijesekara N, Dai FF, Hardy AB, et al. Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia. 2010;53:1656–68.PubMedCrossRefGoogle Scholar
  41. 41.
    Sun Q, van Dam RM, Willett WC, et al. Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care. 2009;32:629–34.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Simon SF, Taylor CG. Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp Biol Med (Maywood). 2001;226:43–51.Google Scholar
  43. 43.
    Al-Maroof RA, Al-Sharbatti SS. Serum zinc levels in diabetic patients and effect of zinc supplementation on glycemic control of type 2 diabetics. Saudi Med J. 2006;27:344–50.PubMedGoogle Scholar
  44. 44.
    Tang X, Shay NF. Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J Nutr. 2001;131:1414–20.PubMedGoogle Scholar
  45. 45.
    Wong VV, Nissom PM, Sim SL, et al. Zinc as an insulin replacement in hybridoma cultures. Biotechnol Bioeng. 2006;93:553–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Vimaleswaran KS, Berry DJ, Lu C, et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013;10, e1001383.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Kong J, Li YC. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab. 2006;290:E916–24.PubMedCrossRefGoogle Scholar
  48. 48.
    Pramyothin P, Biancuzzo RM, Lu Z, et al. Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas. J Clin Invest. 1984;73:759–66.CrossRefGoogle Scholar
  49. 49.
    Kadowaki S, Norman AW. Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas. J Clin Invest. 1984;73:759–66.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Pike JW, Meyer MB. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D(3). Endocrinol Metab Clin North Am. 2010;39:255–69. table of contents.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Zeitz U, Weber K, Soegiarto DW, et al. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J. 2003;17:509–11.PubMedGoogle Scholar
  52. 52.
    Oh JY, Barrett-Connor E. Association between vitamin D receptor polymorphism and type 2 diabetes or metabolic syndrome in community-dwelling older adults: the Rancho Bernardo Study. Metabolism. 2002;51:356–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Ogunkolade BW, Boucher BJ, Prahl JM, et al. Vitamin D receptor (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity, and VDR genotype in Bangladeshi Asians. Diabetes. 2002;51:2294–300.PubMedCrossRefGoogle Scholar
  54. 54.
    Schuch NJ, Garcia VC, Vivolo SR, et al. Relationship between Vitamin D receptor gene polymorphisms and the components of metabolic syndrome. Nutr J. 2013;12:96.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Lee S, Clark SA, Gill RK, et al. 1,25-Dihydroxyvitamin D3 and pancreatic beta-cell function: vitamin D receptors, gene expression, and insulin secretion. Endocrinology. 1994;134:1602–10.PubMedGoogle Scholar
  56. 56.
    Ng KY, Ma MT, Leung KK, et al. Vitamin D and vitamin A receptor expression and the proliferative effects of ligand activation of these receptors on the development of pancreatic progenitor cells derived from human fetal pancreas. Stem Cell Rev. 2011;7:53–63.PubMedCrossRefGoogle Scholar
  57. 57.•
    Wolden-Kirk H, Rondas D, Bugliani M, et al. Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D3 protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans. Endocrinol. 2014;155:736–47. This is an important study that showed VitD might be effective at improving β-cell resistance to detrimental conditions associated with T1D and T2D.CrossRefGoogle Scholar
  58. 58.
    Sadek KM, Shaheen H. Biochemical efficacy of vitamin D in ameliorating endocrine and metabolic disorders in diabetic rats. Pharm Biol. 2014;52:591–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang AP, Li X, Chao C, et al. 1alpha, 25(OH)(2) D(3) protects pancreatic beta-cell line from cytokine-induced apoptosis and impaired insulin secretion. Zhonghua Yi Xue Za Zhi. 2012;92:695–9.PubMedGoogle Scholar
  60. 60.•
    Kayaniyil S, Retnakaran R, Harris SB, et al. Prospective associations of vitamin D with beta-cell function and glycemia: the PROspective Metabolism and ISlet cell Evaluation (PROMISE) cohort study. Diabetes. 2011;60:2947–53. This is an interesting study showing that increased baseline vitamin D levels are correlated to better β-cell function.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Kayaniyil S, Vieth R, Retnakaran R, et al. Association of vitamin D with insulin resistance and beta-cell dysfunction in subjects at risk for type 2 diabetes. Diabetes Care. 2010;33:1379–81.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    de las Heras J, Rajakumar K, Lee S, et al. 25-Hydroxyvitamin D in obese youth across the spectrum of glucose tolerance from normal to prediabetes to type 2 diabetes. Diabetes Care. 2013;36:2048–53.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Javed A, Vella A, Balagopal PB, et al. Cholecalciferol supplementation does not influence beta-cell function and insulin action in obese adolescents: a prospective double-blind randomized trial. J Nutr. 2015;145:284–90.PubMedCrossRefGoogle Scholar
  64. 64.•
    Kramer CK, Swaminathan B, Hanley AJ, et al. Prospective associations of vitamin D status with beta-cell function, insulin sensitivity, and glycemia: the impact of parathyroid hormone status. Diabetes. 2014;63:3868–79. This study underlines the need to take PTH into consideration when evaluating the impact of VitD on glucose homeostasis.PubMedCrossRefGoogle Scholar
  65. 65.
    Wolden-Kirk H, Overbergh L, Gysemans C, et al. Unraveling the effects of 1,25OH2D3 on global gene expression in pancreatic islets. J Steroid Biochem Mol Biol. 2013;136:68–79.PubMedCrossRefGoogle Scholar
  66. 66.
    Mitri J, Dawson-Hughes B, Hu FB, et al. Effects of vitamin D and calcium supplementation on pancreatic beta cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr. 2011;94:486–94.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Puntarulo S. Iron, oxidative stress and human health. Mol Aspects Med. 2005;26:299–312.PubMedCrossRefGoogle Scholar
  68. 68.
    Buysschaert M, Paris I, Selvais P, et al. Clinical aspects of diabetes secondary to idiopathic haemochromatosis in French-speaking Belgium. Diabetes Metab. 1997;23:308–13.PubMedGoogle Scholar
  69. 69.
    Moirand R, Adams PC, Bicheler V, et al. Clinical features of genetic hemochromatosis in women compared with men. Ann Intern Med. 1997;127:105–10.PubMedCrossRefGoogle Scholar
  70. 70.
    Dmochowski K, Finegood DT, Francombe W, et al. Factors determining glucose tolerance in patients with thalassemia major. J Clin Endocrinol Metab. 1993;77:478–83.PubMedGoogle Scholar
  71. 71.
    Merkel PA, Simonson DC, Amiel SA, et al. Insulin resistance and hyperinsulinemia in patients with thalassemia major treated by hypertransfusion. N Engl J Med. 1988;318:809–14.PubMedCrossRefGoogle Scholar
  72. 72.
    Sheu WH, Chen YT, Lee WJ, et al. A relationship between serum ferritin and the insulin resistance syndrome is present in non-diabetic women but not in non-diabetic men. Clin Endocrinol (Oxf). 2003;58:380–5.CrossRefGoogle Scholar
  73. 73.
    MacDonald MJ, Cook JD, Epstein ML, et al. Large amount of (apo)ferritin in the pancreatic insulin cell and its stimulation by glucose. FASEB J. 1994;8:777–81.PubMedGoogle Scholar
  74. 74.
    Andrews NC. The iron transporter DMT1. Int J Biochem Cell Biol. 1999;31:991–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Swaminathan S, Fonseca VA, Alam MG, et al. The role of iron in diabetes and its complications. Diabetes Care. 2007;30:1926–33.PubMedCrossRefGoogle Scholar
  76. 76.
    Tuomainen TP, Nyyssonen K, Salonen R, et al. Body iron stores are associated with serum insulin and blood glucose concentrations. Population study in 1,013 eastern Finnish men. Diabetes Care. 1997;20:426–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Cooksey RC, Jouihan HA, Ajioka RS, et al. Oxidative stress, beta-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology. 2004;145:5305–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Abraham D, Rogers J, Gault P, et al. Increased insulin secretory capacity but decreased insulin sensitivity after correction of iron overload by phlebotomy in hereditary haemochromatosis. Diabetologia. 2006;49:2546–51.PubMedCrossRefGoogle Scholar
  79. 79.
    Platis O, Anagnostopoulos G, Farmaki K, et al. Glucose metabolism disorders improvement in patients with thalassaemia major after 24–36 months of intensive chelation therapy. Pediatr Endocrinol Rev. 2004;2 Suppl 2:279–81.PubMedGoogle Scholar
  80. 80.
    Borel MJ, Beard JL, Farrell PA. Hepatic glucose production and insulin sensitivity and responsiveness in iron-deficient anemic rats. Am J Physiol. 1993;264:E380–90.PubMedGoogle Scholar
  81. 81.
    Farrell PA, Beard JL, Druckenmiller M. Increased insulin sensitivity in iron-deficient rats. J Nutr. 1988;118:1104–9.PubMedGoogle Scholar
  82. 82.
    Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Iron stores, blood donation, and insulin sensitivity and secretion. Clin Chem. 2005;51:1201–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Bo S, Menato G, Villois P, et al. Iron supplementation and gestational diabetes in midpregnancy. Am J Obstet Gynecol. 2009;201(158):e151–6.Google Scholar
  84. 84.
    Tarim O, Kucukerdogan A, Gunay U, et al. Effects of iron deficiency anemia on hemoglobin A1c in type 1 diabetes mellitus. Pediatr Int. 1999;41:357–62.PubMedCrossRefGoogle Scholar
  85. 85.
    Matthews KA, Rhoten WB, Driscoll HK, et al. Vitamin A deficiency impairs fetal islet development and causes subsequent glucose intolerance in adult rats. J Nutr. 2004;134:1958–63.PubMedGoogle Scholar
  86. 86.•
    Trasino SE, Benoit YD, Gudas LJ. Vitamin A deficiency causes hyperglycemia and loss of pancreatic beta-cell mass. J Biol Chem. 2015;290:1456–73. This is an important trial that demonstrates the need for ATRA in glucose-stimulated insulin secretion and the maintenance of pancreatic β-cell and α-cell mass.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Donath MY, Halban PA. Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia. 2004;47:581–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Rhee EJ, Plutzky J. Retinoid metabolism and diabetes mellitus. Diabetes Metab J. 2012;36:167–80.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Shmarakov I, Fleshman MK, D’Ambrosio DN, et al. Hepatic stellate cells are an important cellular site for beta-carotene conversion to retinoid. Arch Biochem Biophys. 2010;504:3–10.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Lu J, Dixon WT, Tsin AT, et al. The metabolic availability of vitamin A is decreased at the onset of diabetes in BB rats. J Nutr. 2000;130:1958–62.PubMedGoogle Scholar
  91. 91.
    Gudas LJ, Wagner JA. Retinoids regulate stem cell differentiation. J Cell Physiol. 2011;226:322–30.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Kobayashi H, Spilde TL, Bhatia AM, et al. Retinoid signaling controls mouse pancreatic exocrine lineage selection through epithelial-mesenchymal interactions. Gastroenterology. 2002;123:1331–40.PubMedCrossRefGoogle Scholar
  93. 93.
    Kadison A, Kim J, Maldonado T, et al. Retinoid signaling directs secondary lineage selection in pancreatic organogenesis. J Pediatr Surg. 2001;36:1150–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Molotkov A, Molotkova N, Duester G. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn. 2005;232:950–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Ostrom M, Loffler KA, Edfalk S, et al. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells. PLoS One. 2008;3, e2841.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Perez RJ, Benoit YD, Gudas LJ. Deletion of retinoic acid receptor beta (RARbeta) impairs pancreatic endocrine differentiation. Exp Cell Res. 2013;319:2196–204.PubMedCrossRefGoogle Scholar
  97. 97.
    Chertow BS, Blaner WS, Baranetsky NG, et al. Effects of vitamin A deficiency and repletion on rat insulin secretion in vivo and in vitro from isolated islets. J Clin Invest. 1987;79:163–9.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Tuch BE, Osgerby KJ. Maturation of insulinogenic response to glucose in human fetal pancreas with retinoic acid. Horm Metab Res Suppl. 1990;25:233–8.PubMedGoogle Scholar
  99. 99.
    Fernandez-Mejia C, Davidson MB. Regulation of glucokinase and proinsulin gene expression and insulin secretion in RIN-m5F cells by dexamethasone, retinoic acid, and thyroid hormone. Endocrinology. 1992;130:1660–8.PubMedGoogle Scholar
  100. 100.
    Blumentrath J, Neye H, Verspohl EJ. Effects of retinoids and thiazolidinediones on proliferation, insulin release, insulin mRNA, GLUT 2 transporter protein and mRNA of INS-1 cells. Cell Biochem Funct. 2001;19:159–69.PubMedCrossRefGoogle Scholar
  101. 101.
    Chertow BS, Driscoll HK, Goking NQ, et al. Retinoid-X receptors and the effects of 9-cis-retinoic acid on insulin secretion from RINm5F cells. Metabolism. 1997;46:656–60.PubMedCrossRefGoogle Scholar
  102. 102.
    Kane MA, Folias AE, Pingitore A, et al. Identification of 9-cis-retinoic acid as a pancreas-specific autacoid that attenuates glucose-stimulated insulin secretion. Proc Natl Acad Sci U S A. 2010;107:21884–9.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Tsuruzoe K, Araki E, Furukawa N, et al. Creation and characterization of a mitochondrial DNA-depleted pancreatic beta-cell line: impaired insulin secretion induced by glucose, leucine, and sulfonylureas. Diabetes. 1998;47:621–31.PubMedCrossRefGoogle Scholar
  104. 104.
    Floyd Jr JC, Fajans SS, Conn JW, et al. Stimulation of insulin secretion by amino acids. J Clin Invest. 1966;45:1487–502.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Kuhara T, Ikeda S, Ohneda A, et al. Effects of intravenous infusion of 17 amino acids on the secretion of GH, glucagon, and insulin in sheep. Am J Physiol. 1991;260:E21–6.PubMedGoogle Scholar
  106. 106.
    Fahien LA, Macdonald MJ. The complex mechanism of glutamate dehydrogenase in insulin secretion. Diabetes. 2011;60:2450–4.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Yang J, Wong RK, Park M, et al. Leucine regulation of glucokinase and ATP synthase sensitizes glucose-induced insulin secretion in pancreatic beta-cells. Diabetes. 2006;55:193–201.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhang Y, Guo K, LeBlanc RE, et al. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes. 2007;56:1647–54.PubMedCrossRefGoogle Scholar
  109. 109.
    Nilsson M, Holst JJ, Bjorck IM. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr. 2007;85:996–1004.PubMedGoogle Scholar
  110. 110.
    Gingras AC, Kennedy SG, O’Leary MA, et al. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998;12:502–13.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Pause A, Belsham GJ, Gingras AC, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature. 1994;371:762–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Lin TA, Kong X, Haystead TA, et al. PHAS-1 as a link between mitogen- activated protein kinase and translation initiation. Science. 1994;266:653–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Xu G, Marshall CA, Lin TA, et al. Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation. J Biol Chem. 1998;273:4485–91.PubMedCrossRefGoogle Scholar
  114. 114.
    Xu G, Kwon G, Marshall CA, et al. Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic beta-cells. A possible role in protein translation and mitogenic signaling. J Biol Chem. 1998;273:28178–84.PubMedCrossRefGoogle Scholar
  115. 115.
    Stipanuk MH. Leucine and protein synthesis: mTOR and beyond. Nutr Rev. 2007;65:122–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Kwon G, Marshall CA, Pappan KL, et al. Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes. 2004;53 Suppl 3:S225–32.PubMedCrossRefGoogle Scholar
  117. 117.
    Xu G, Kwon G, Cruz WS, et al. Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes. 2001;50:353–60.PubMedCrossRefGoogle Scholar
  118. 118.
    Blomstrand E, Eliasson J, Karlsson HK, et al. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006;136:269S–73S.PubMedGoogle Scholar
  119. 119.
    Dardevet D, Kimball SR, Jefferson LS, et al. Portal infusion of amino acids is more efficient than peripheral infusion in stimulating liver protein synthesis at the same hepatic amino acid load in dogs. Am J Clin Nutr. 2008;88:986–96.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Fox HL, Kimball SR, Jefferson LS, et al. Amino acids stimulate phosphorylation of p70S6k and organization of rat adipocytes into multicellular clusters. Am J Physiol. 1998;274:C206–13.PubMedGoogle Scholar
  121. 121.
    Branstrom R, Efendic S, Berggren PO, et al. Direct inhibition of the pancreatic beta-cell ATP-regulated potassium channel by alpha-ketoisocaproate. J Biol Chem. 1998;273:14113–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest. 2005;115:2047–58.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Stanley LA, Copp AJ, Pope J, et al. Immunochemical detection of arylamine N-acetyltransferase during mouse embryonic development and in adult mouse brain. Teratology. 1998;58:174–82.PubMedCrossRefGoogle Scholar
  124. 124.
    Liu YJ, Cheng H, Drought H, et al. Activation of the KATP channel-independent signaling pathway by the nonhydrolyzable analog of leucine, BCH. Am J Physiol Endocrinol Metab. 2003;285:E380–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Stanley CA. Hyperinsulinism/hyperammonemia syndrome: insights into the regulatory role of glutamate dehydrogenase in ammonia metabolism. Mol Genet Metab. 2004;81 Suppl 1:S45–51.PubMedCrossRefGoogle Scholar
  126. 126.
    Ali AA, Velasquez MT, Hansen CT, et al. Modulation of carbohydrate metabolism and peptide hormones by soybean isoflavones and probiotics in obesity and diabetes. J Nutr Biochem. 2005;16:693–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Fu Z, Gilbert ER, Pfeiffer L, et al. Genistein ameliorates hyperglycemia in a mouse model of nongenetic type 2 diabetes. Appl Physiol Nutr Metab. 2012;37:480–8.PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Jonas JC, Plant TD, Gilon P, et al. Multiple effects and stimulation of insulin secretion by the tyrosine kinase inhibitor genistein in normal mouse islets. Br J Pharmacol. 1995;114:872–80.PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Persaud SJ, Harris TE, Burns CJ, et al. Tyrosine kinases play a permissive role in glucose-induced insulin secretion from adult rat islets. J Mol Endocrinol. 1999;22:19–28.PubMedCrossRefGoogle Scholar
  130. 130.
    Liu D, Zhen W, Yang Z, et al. Genistein acutely stimulates insulin secretion in pancreatic beta-cells through a cAMP-dependent protein kinase pathway. Diabetes. 2006;55:1043–50.PubMedCrossRefGoogle Scholar
  131. 131.
    Gomez E, Pritchard C, Herbert TP. cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate Raf-independent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic beta-cells. J Biol Chem. 2002;277:48146–51.PubMedCrossRefGoogle Scholar
  132. 132.
    Wang X, Zhou J, Doyle ME, et al. Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic beta-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism. Endocrinology. 2001;142:1820–7.PubMedGoogle Scholar
  133. 133.
    Fu Z, Zhang W, Zhen W, et al. Genistein induces pancreatic beta-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology. 2010;151:3026–37.PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Jhala US, Canettieri G, Screaton RA, et al. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev. 2003;17:1575–80.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Philippe J, Missotten M. Functional characterization of a cAMP-responsive element of the rat insulin I gene. J Biol Chem. 1990;265:1465–9.PubMedGoogle Scholar
  136. 136.
    Hennige AM, Burks DJ, Ozcan U, et al. Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest. 2003;112:1521–32.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • William T. Moore
    • 1
  • Suzanne M. Bowser
    • 1
  • Dane W. Fausnacht
    • 1
  • Linda L. Staley
    • 1
  • Kyung-Shin Suh
    • 1
  • Dongmin Liu
    • 1
    Email author
  1. 1.Department of Human Nutrition, Foods and Exercises, College of Agricultural and Life SciencesVirginia Tech Corporate Research CenterBlacksburgUSA

Personalised recommendations