Skip to main content

Advertisement

Log in

Weight Loss Interventions and Progression of Diabetic Kidney Disease

  • Microvascular Complications—Nephropathy (T Isakova, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Progressive renal impairment (diabetic kidney disease (DKD)) occurs in upwards of 40 % of patients with obesity and type 2 diabetes mellitus (T2DM) and is a cause of significant morbidity and mortality. Means of attenuating the progression of DKD focus on amelioration of risk factors. Visceral obesity is implicated as a causative agent in impaired metabolic and cardiovascular control in T2DM, and various approaches primarily targeting weight have been examined for their impact on markers of renal injury and dysfunction in DKD. The current report summarises the evidence base for the impact of surgical, lifestyle and pharmacological approaches to weight loss on renal end points in DKD. The potential for a threshold of weight loss more readily achievable by surgical intervention to be a prerequisite for renal improvement is highlighted. Comparing efficacious non-surgical weight loss strategies with surgical strategies in appropriately powered and controlled prospective studies is a priority for the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci. 2014;15(6):367–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care. 2005;28(7):1769–78.

    Article  PubMed  Google Scholar 

  3. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144(1):21–8.

    Article  PubMed  Google Scholar 

  4. Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24(2):302–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Maric C, Hall JE. Obesity, metabolic syndrome and diabetic nephropathy. Contrib Nephrol. 2011;170:28–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tesch GH. Macrophages and diabetic nephropathy. Semin Nephrol. 2010;30(3):290–301.

    Article  CAS  PubMed  Google Scholar 

  7. Wu CC, Sytwu HK, Lu KC, Lin YF. Role of T cells in type 2 diabetic nephropathy. Exp Diabetes Res. 2011;2011:514738.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124(6):2333–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Darouich S, Goucha R, Jaafoura MH, Zekri S, Ben Maiz H, Kheder A. Clinicopathological characteristics of obesity-associated focal segmental glomerulosclerosis. Ultrastruct Pathol. 2011;35(4):176–82.

    Article  PubMed  Google Scholar 

  10. Docherty NG, le Roux CW. Improvements in the metabolic milieu following Roux-en-Y gastric bypass and the arrest of diabetic kidney disease. Exp Physiol. 2014;99(9):1146–53.

    Article  PubMed  Google Scholar 

  11. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  CAS  PubMed  Google Scholar 

  12. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–88.

    Article  CAS  PubMed  Google Scholar 

  13. Thomson SC, Vallon V, Blantz RC. Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am J Physiol Renal Physiol. 2004;286(1):F8–15.

    Article  CAS  PubMed  Google Scholar 

  14. Tiwari S, Riazi S, Ecelbarger CA. Insulin’s impact on renal sodium transport and blood pressure in health, obesity, and diabetes. Am J Physiol Renal Physiol. 2007;293(4):F974–84.

    Article  CAS  PubMed  Google Scholar 

  15. Hyvonen ME, Saurus P, Wasik A, et al. Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes. Mol Cell Endocrinol. 2010;328(1-2):70–9.

    Article  PubMed  Google Scholar 

  16. Sieber J, Jehle AW. Free fatty acids and their metabolism affect function and survival of podocytes. Front Endocrinol (Lausanne). 2014;5:186.

    Google Scholar 

  17. Coward RJ, Welsh GI, Koziell A, et al. Nephrin is critical for the action of insulin on human glomerular podocytes. Diabetes. 2007;56(4):1127–35.

    Article  CAS  PubMed  Google Scholar 

  18. Weir MR. Microalbuminuria and cardiovascular disease. Clin J Am Soc Nephrol. 2007;2(3):581–90.

    Article  PubMed  Google Scholar 

  19. Pugliese G. Updating the natural history of diabetic nephropathy. Acta Diabetol. 2014;51(6):905–15.

    Article  CAS  PubMed  Google Scholar 

  20. Ikramuddin S, Korner J, Lee WJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA. 2013;309(21):2240–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pournaras DJ, Osborne A, Hawkins SC, et al. Remission of type 2 diabetes after gastric bypass and banding: mechanisms and 2 year outcomes. Ann Surg. 2010;252(6):966–71.

    Article  PubMed  Google Scholar 

  22. Kamvissi V, Salerno A, Bornstein SR, Mingrone G, Rubino F. Incretins or anti-incretins? A new model for the “entero-pancreatic axis”. Horm Metab Res. 2015;47(1):84–7.

    CAS  PubMed  Google Scholar 

  23. American Diabetes A, Bantle JP, Wylie-Rosett J, et al. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2008;31 Suppl 1:S61–78.

    Article  Google Scholar 

  24. Wheeler ML, Fineberg SE, Fineberg NS, Gibson RG, Hackward LL. Animal versus plant protein meals in individuals with type 2 diabetes and microalbuminuria: effects on renal, glycemic, and lipid parameters. Diabetes Care. 2002;25(8):1277–82.

    Article  PubMed  Google Scholar 

  25. Scholtz S, Miras AD, Chhina N, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63(6):891–902.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bolignano D, Zoccali C. Effects of weight loss on renal function in obese CKD patients: a systematic review. Nephrol Dial Transplant. 2013;28 Suppl 4:iv82-98.

    Article  PubMed  Google Scholar 

  27. Navaneethan SD, Yehnert H, Moustarah F, Schreiber MJ, Schauer PR, Beddhu S. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4(10):1565–74.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Iaconelli A, Panunzi S, De Gaetano A, et al. Effects of bilio-pancreatic diversion on diabetic complications: a 10-year follow-up. Diabetes Care. 2011;34(3):561–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Navaneethan SD, Kelly KR, Sabbagh F, Schauer PR, Kirwan JP, Kashyap SR. Urinary albumin excretion, HMW adiponectin, and insulin sensitivity in type 2 diabetic patients undergoing bariatric surgery. Obes Surg. 2010;20(3):308–15.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Palomar R, Fernandez-Fresnedo G, Dominguez-Diez A, et al. Effects of weight loss after biliopancreatic diversion on metabolism and cardiovascular profile. Obes Surg. 2005;15(6):794–8.

    Article  PubMed  Google Scholar 

  31. Amor A, Jimenez A, Moize V, et al. Weight loss independently predicts urinary albumin excretion normalization in morbidly obese type 2 diabetic patients undergoing bariatric surgery. Surg Endosc. 2013;27(6):2046–2051*. This study presents data suggesting that weight loss is the only independent predictor of reduction in urinary albumin excretion at 1 year post-surgery.

    Article  PubMed  Google Scholar 

  32. Fenske WK, Dubb S, Bueter M, et al. Effect of bariatric surgery-induced weight loss on renal and systemic inflammation and blood pressure: a 12-month prospective study. Surg Obes Relat Dis. 2013;9(4):559–68.

    Article  PubMed  Google Scholar 

  33. Agrawal V, Khan I, Rai B, et al. The effect of weight loss after bariatric surgery on albuminuria. Clin Nephrol. 2008;70(3):194–202.

    Article  CAS  PubMed  Google Scholar 

  34. Agrawal V, Krause KR, Chengelis DL, Zalesin KC, Rocher LL, McCullough PA. Relation between degree of weight loss after bariatric surgery and reduction in albuminuria and C-reactive protein. Surg Obes Relat Dis. 2009;5(1):20–6.

    Article  PubMed  Google Scholar 

  35. Stephenson DT, Jandeleit-Dahm K, Balkau B, Cohen N. Improvement in albuminuria in patients with type 2 diabetes after laparoscopic adjustable gastric banding. Diab Vasc Dis Res. 2013;10(6):514–9.

    Article  PubMed  Google Scholar 

  36. Miras AD, Chuah LL, Lascaratos G, et al. Bariatric surgery does not exacerbate and may be beneficial for the microvascular complications of type 2 diabetes. Diabetes Care. 2012;35(12):e81.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Brethauer SA, Aminian A, Romero-Talamas H, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258(4):628–36. discussion 636-627.

    PubMed Central  PubMed  Google Scholar 

  38. Heneghan HM, Cetin D, Navaneethan SD, Orzech N, Brethauer SA, Schauer PR. Effects of bariatric surgery on diabetic nephropathy after 5 years of follow-up. Surg Obes Relat Dis. 2013;9(1):7–14.

    Article  PubMed  Google Scholar 

  39. Hou CC, Shyu RS, Lee WJ, Ser KH, Lee YC, Chen SC. Improved renal function 12 months after bariatric surgery. Surg Obes Relat Dis. 2013;9(2):202–6.

    Article  PubMed  Google Scholar 

  40. Jose B, Ford S, Super P, Thomas GN, Dasgupta I, Taheri S. The effect of biliopancreatic diversion surgery on renal function—a retrospective study. Obes Surg. 2013;23(5):634–7.

    Article  PubMed  Google Scholar 

  41. Johnson BL, Blackhurst DW, Latham BB, et al. Bariatric surgery is associated with a reduction in major macrovascular and microvascular complications in moderately to severely obese patients with type 2 diabetes mellitus. J Am Coll Surg. 2013;216(4):545–56. discussion 556-548.

    Article  PubMed  Google Scholar 

  42. Sjostrom L, Peltonen M, Jacobson P, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297–304. This study shows that the protective effects of surgery against the development of microvascular complications is an enduring phenomenon.

    Article  PubMed  Google Scholar 

  43. Carlsson LM, Romeo S, Jacobson P, et al. The incidence of albuminuria after bariatric surgery and usual care in Swedish Obese Subjects (SOS): a prospective controlled intervention trial. Int J Obes. 2015;39(1):169–75.

    Article  CAS  Google Scholar 

  44. Nicholson AS, Sklar M, Barnard ND, Gore S, Sullivan R, Browning S. Toward improved management of NIDDM: a randomized, controlled, pilot intervention using a lowfat, vegetarian diet. Prev Med. 1999;29(2):87–91.

    Article  CAS  PubMed  Google Scholar 

  45. Morales E, Valero MA, Leon M, Hernandez E, Praga M. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am J Kidney Dis Off J Natl Kidney Found. 2003;41(2):319–27.

    Article  Google Scholar 

  46. Look ARG. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2014;2(10):801–9. This study shows that optimised multimodlal lifestyle based interventions can result in a magnitude of weight loss compatible with meaningful reductions in evidence of renal injury.

    Article  Google Scholar 

  47. Vasquez B, Flock EV, Savage PJ, et al. Sustained reduction of proteinuria in type 2 (non-insulin-dependent) diabetes following diet-induced reduction of hyperglycaemia. Diabetologia. 1984;26(2):127–33.

    Article  CAS  PubMed  Google Scholar 

  48. Solerte SB, Fioravanti M, Schifino N, Ferrari E. Effects of diet-therapy on urinary protein excretion albuminuria and renal haemodynamic function in obese diabetic patients with overt nephropathy. Int J Obes. 1989;13(2):203–11.

    CAS  PubMed  Google Scholar 

  49. Saiki A, Nagayama D, Ohhira M, et al. Effect of weight loss using formula diet on renal function in obese patients with diabetic nephropathy. Int J Obes. 2005;29(9):1115–20.

    Article  CAS  Google Scholar 

  50. Yamamoto-Kabasawa K, Hosojima M, Yata Y, et al. Benefits of a 12-week lifestyle modification program including diet and combined aerobic and resistance exercise on albuminuria in diabetic and non-diabetic Japanese populations. Clin Exp Nephrol. 2015.

  51. Friedman AN, Chambers M, Kamendulis LM, Temmerman J. Short-term changes after a weight reduction intervention in advanced diabetic nephropathy. Clin J Am Soc Nephrol. 2013;8(11):1892–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Stenlof K, Rossner S, Vercruysse F, et al. Topiramate in the treatment of obese subjects with drug-naive type 2 diabetes. Diabetes Obes Metab. 2007;9(3):360–8.

    Article  CAS  PubMed  Google Scholar 

  53. Tong PC, Lee ZS, Sea MM, et al. The effect of orlistat-induced weight loss, without concomitant hypocaloric diet, on cardiovascular risk factors and insulin sensitivity in young obese Chinese subjects with or without type 2 diabetes. Arch Intern Med. 2002;162(21):2428–35.

    Article  CAS  PubMed  Google Scholar 

  54. Hofso D, Nordstrand N, Johnson LK, et al. Obesity-related cardiovascular risk factors after weight loss: a clinical trial comparing gastric bypass surgery and intensive lifestyle intervention. Eur J Endocrinol. 2010;163(5):735–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Neil G. Docherty, Aoife L. Canney and Carel W. le Roux declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil G. Docherty.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Docherty, N.G., Canney, A.L. & le Roux, C.W. Weight Loss Interventions and Progression of Diabetic Kidney Disease. Curr Diab Rep 15, 55 (2015). https://doi.org/10.1007/s11892-015-0625-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0625-2

Keywords

Navigation