Skip to main content

Advertisement

Log in

Early-Life Exposure to Substance Abuse and Risk of Type 2 Diabetes in Adulthood

  • Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (E Mayer-Davis and C Shay, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) is a chronic non-communicable disease that is driven by insulin resistance as a result of increasing obesity and decreasing activity levels that occur with increasing age. This disease generally develops after the age of 40, but it is now increasingly diagnosed in children and young adults. Increasing evidence, however, suggests that T2D can originate during early development. It has been repeatedly found that malnutrition during the gestational period can result in intrauterine growth restriction and low birth weight, which in combination with postnatal catch-up growth may subsequently lead to the development of T2D. There is ample evidence that T2D may also be programmed by maternal substance abuse (the harmful use of psychoactive substances such as illicit drugs or alcohol) during pregnancy and/or lactation. The research activity in this field is currently mainly focused on the childhood health problems following prenatal exposures to substance abuse. The delayed programming effects on adult-onset disorders, including metabolic syndrome and T2D, however, have been reported only rarely. This review provides animal and human evidence that early-life exposure to substance abuse, including alcohol, nicotine, and cocaine, may program not only childhood health outcomes but also life-long metabolic health status, including risk of T2D and related conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wilmot E, Idris I. Early onset type 2 diabetes: risk factors, clinical impact and management. Ther Adv Chronic Dis. 2014;5(6):234–44.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Vaag A, Brøns C, Gillberg L, Hansen NS, Hjort L, Arora GP, et al. Genetic, nongenetic and epigenetic risk determinants in developmental programming of type 2 diabetes. Acta Obstet Gynecol Scand. 2014;93(11):1099–108.

    Article  PubMed  Google Scholar 

  3. Inadera H. Developmental origins of obesity and type 2 diabetes: molecular aspects and role of chemicals. Environ Health Prev Med. 2013;18(3):185–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007;165(8):849–57.

    Article  PubMed  Google Scholar 

  5. Narkowicz S, Płotka J, Polkowska Ż, Biziuk M, Namieśnik J. Prenatal exposure to substance of abuse: a worldwide problem. Environ Int. 2013;54:141–63.

    Article  CAS  PubMed  Google Scholar 

  6. Sithisarn T, Granger DT, Bada HS. Consequences of prenatal substance use. Int J Adolesc Med Health. 2012;24(2):105–12.

    Article  PubMed  Google Scholar 

  7. Behnke M, Smith VC, Committee on Substance Abuse, Committee on Fetus and Newborn. Prenatal substance abuse: short- and long-term effects on the exposed fetus. Pediatrics. 2013;131(3):e1009–24. This review provides information on the short- and long-term effects of the most common drugs involved in prenatal exposure: alcohol, nicotine, cocaine, opiates, marijuana, and methamphetamine.

    Article  PubMed  Google Scholar 

  8. Somm E, Schwitzgebel VM, Vauthay DM, Aubert ML, Hüppi PS. Prenatal nicotine exposure and the programming of metabolic and cardiovascular disorders. Mol Cell Endocrinol. 2009;304:69–77.

    Article  CAS  PubMed  Google Scholar 

  9. Milnerowicz-Nabzdyk E, Bizoń A. Effect of cigarette smoking on vascular flows in pregnancies complicated by intrauterine growth restriction. Reprod Toxicol. 2014;50:27–35.

    Article  CAS  PubMed  Google Scholar 

  10. Cupul-Uicab LA, Skjaerven R, Haug K, Melve KK, Engel SM, Longnecker MP. In utero exposure to maternal tobacco smoke and subsequent obesity, hypertension, and gestational diabetes among women in the MoBa cohort. Environ Health Perspect. 2012;120:355–60. This study shows that exposure to nicotine in utero is associated with hypertension, obesity, and gestational diabetes mellitus in adult women.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bruin JE, Gerstein HC, Holloway AC. Long-term consequences of fetal and neonatal nicotine exposure: a critical review. Toxicol Sci. 2010;116:364–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Freitas AL, Abreu-Villaça Y, Passos MC, Lisboa PC. Neonatal nicotine exposure causes insulin and leptin resistance and inhibits hypothalamic leptin signaling in adult rat offspring. J Endocrinol. 2010;206:55–63.

    Article  Google Scholar 

  13. Lisboa PC, de Oliveira E, de Moura EG. Obesity and endocrine dysfunction programmed by maternal smoking in pregnancy and lactation. Front Physiol. 2012;3:437.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Holloway AC, Cuu DQ, Morrison KM, Gerstein HC, Tarnopolsky MA. Transgenerational effects of fetal and neonatal exposure to nicotine. Endocrine. 2007;31:254–9.

    Article  CAS  PubMed  Google Scholar 

  15. Rhee KE, Phelan S, McCaffery J. Early determinants of obesity: genetic, epigenetic, and in utero influences. Int J Pediatr. 2012;2012:9.

    Article  Google Scholar 

  16. Alexander BT, Henry Dasinger J, Intapad S. Effect of low birth weight on women’s health. Clin Ther. 2014;36(12):1913–23.

    Article  PubMed  Google Scholar 

  17. Tanvig M. Offspring body size and metabolic profile—effects of lifestyle intervention in obese pregnant women. Dan Med J. 2014;61(7):B4893.

    PubMed  Google Scholar 

  18. Von K, Toschke A, Koletzko B, Slikker W. Maternal smoking during pregnancy and childhood obesity. Am J Epidemiol. 2002;156:954–61.

    Article  Google Scholar 

  19. Wideroe M, Vik T, Jacobsen G, Bakketeig L. Does maternal smoking during pregnancy cause childhood overweight? Paediatr Perinat Epidemiol. 2003;17:171–9.

    Article  PubMed  Google Scholar 

  20. Jaddoe VW, de Ridder MA, van den Elzen AP, Hofman A, Uiterwaal CS, Witteman JC. Maternal smoking in pregnancy is associated with cholesterol development in the offspring: a 27-years follow-up study. Atherosclerosis. 2008;196:42–8.

    Article  CAS  PubMed  Google Scholar 

  21. Oken E, Levitan EB, Gillman MW. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes (Lond). 2008;32(2):201–10.

    Article  CAS  Google Scholar 

  22. Power C, Jefferis BJ. Fetal environment and subsequent obesity: a study of maternal smoking. Int J Epidemiol. 2002;31 Suppl 2:413–9.

    Article  PubMed  Google Scholar 

  23. Thomas C, Hypponen E, Power C. Prenatal exposures and glucose metabolism in adulthood: are effects mediated through birth weight and adiposity? Diabetes Care. 2007;30:918–24.

    Article  PubMed  Google Scholar 

  24. Power C, Atherton K, Thomas C. Maternal smoking in pregnancy, adult adiposity and other risk factors for cardiovascular disease. Atherosclerosis. 2010;211:643–8.

    Article  CAS  PubMed  Google Scholar 

  25. Chiolero A, Kaufman JS. Metabolic mediators of body-mass index and cardiovascular risk. Lancet. 2014;383(9934):2042.

    Article  PubMed  Google Scholar 

  26. Geerts CC, Bots ML, Grobbee DE, Uiterwaal CS. Parental smoking and vascular damage in young adult offspring: is early life exposure critical? The atherosclerosis risk in young adults study. Arterioscler Thromb Vasc Biol. 2008;28:2296–302.

    Article  CAS  PubMed  Google Scholar 

  27. Montgomery SM, Ekbom A. Smoking during pregnancy and diabetes mellitus in a British longitudinal birth cohort. Br Med J. 2002;324:26–7. The hypothesis that maternal smoking during pregnancy increases both the risk of early onset type 2 diabetes and non-diabetic obesity in offspring was tested.

    Article  Google Scholar 

  28. Mattsson K, Källén K, Longnecker MP, Rignell-Hydbom A, Rylander L. Maternal smoking during pregnancy and daughters’ risk of gestational diabetes and obesity. Diabetologia. 2013;56(8):1689–95. This study provides direct evidence that women prenatally exposed to nicotine are at higher risk of developing gestational diabetes and obesity.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Harris HR, Willett WC, Michels KB. Parental smoking during pregnancy and risk of overweight and obesity in the daughter. Int J Obes (Lond). 2013;37(10):1356–63.

    Article  CAS  Google Scholar 

  30. Lajous M, Tondeur L, Fagherazzi G, de Lauzon-Guillain B, Boutron-Ruaualt MC, Clavel-Chapelon F. Childhood and adult secondhand smoke and type 2 diabetes in women. Diabetes Care. 2013;36(9):2720–5.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Pietraszek A, Gregersen S, Hermansen K. Alcohol and type 2 diabetes. A review. Nutr Metab Cardiovasc Dis. 2010;20(5):366–75.

    Article  CAS  PubMed  Google Scholar 

  32. Weinberg J, Sliwowska JH, Lan N, Hellemans KG. Prenatal alcohol exposure: foetal programming, the hypothalamic-pituitary-adrenal axis and sex differences in outcome. J Neuroendocrinol. 2008;20:470–88.

    Article  CAS  PubMed  Google Scholar 

  33. Dörrie N, Föcker M, Freunscht I, Hebebrand J. Fetal alcohol spectrum disorders. Eur Child Adolesc Psychiatry. 2014;23(10):863–75.

    Article  PubMed  Google Scholar 

  34. Pruett D, Waterman EH, Caughey AB. Fetal alcohol exposure: consequences, diagnosis, and treatment. Obstet Gynecol Surv. 2013;68(1):62–9.

    Article  PubMed  Google Scholar 

  35. Vaiserman AM. Long-term health consequences of early-life exposure to substance abuse: an epigenetic perspective. J DOHaD. 2013;4:269–79.

    CAS  Google Scholar 

  36. Breese CR, D’Costa A, Ingram RL, et al. Long-term suppression of insulin-like growth factor-1 in rats after in utero ethanol exposure: relationship to somatic growth. J Pharmacol Exp Ther. 1993;264 Suppl 1:448–56.

    CAS  PubMed  Google Scholar 

  37. Schneider HJ, Friedrich N, Klotsche J, Schipf S, Nauck M, Völzke H, et al. Prediction of incident diabetes mellitus by baseline IGF1 levels. Eur J Endocrinol. 2011;164(2):223–9.

    Article  CAS  PubMed  Google Scholar 

  38. Pennington JS, Shuvaeva TI, Pennington SN. Maternal dietary ethanol consumption is associated with hypertriglyceridemia in adult rat offspring. Alcohol Clin Exp Res. 2002;26(6):848–55.

    Article  CAS  PubMed  Google Scholar 

  39. Minuk GY, Meyers AF, Legare DJ, Sadri P, Lautt WW. Fetal exposure to alcohol results in adult insulin resistance in the rat. Proc West Pharmacol Soc. 1998;41:39–40.

    CAS  PubMed  Google Scholar 

  40. Elton CW, Pennington JS, Lynch SA, Carver FM, Pennington SN. Insulin resistance in adult rat offspring associated with maternal dietary fat and alcohol consumption. J Endocrinol. 2002;173(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  41. Chen L, Nyomba BL. Effects of prenatal alcohol exposure on glucose tolerance in the rat offspring. Metabolism. 2003;52(4):454–62.

    Article  CAS  PubMed  Google Scholar 

  42. Chen L, Nyomba BL. Whole body insulin resistance in rat offspring of mothers consuming alcohol during pregnancy or lactation: comparing prenatal and postnatal exposure. J Appl Physiol (1985). 2004;96(1):167–72.

    Article  CAS  Google Scholar 

  43. Yao XH, Grégoire Nyomba BL. Abnormal glucose homeostasis in adult female rat offspring after intrauterine ethanol exposure. Am J Physiol Regul Integr Comp Physiol. 2007;292(5):R1926–33.

    Article  CAS  PubMed  Google Scholar 

  44. Yao XH, Chen L, Nyomba BL. Adult rats prenatally exposed to ethanol have increased gluconeogenesis and impaired insulin response of hepatic gluconeogenic genes. J Appl Physiol. 2006;100(2):642–8.

    Article  CAS  PubMed  Google Scholar 

  45. Xia LP, Shen L, Kou H, Zhang BJ, Zhang L, Wu Y, et al. Prenatal ethanol exposure enhances the susceptibility to metabolic syndrome in offspring rats by HPA axis-associated neuroendocrine metabolic programming. Toxicol Lett. 2014;226(1):98–105. This study demonstrated that prenatal ethanol exposure induces increased susceptibility to adult metabolic syndrome in male rat offspring fed with high-fat diet.

    Article  CAS  PubMed  Google Scholar 

  46. Williams KH, Shackel NA, Gorrell MD, McLennan SV, Twigg SM. Diabetes and nonalcoholic fatty liver disease: a pathogenic duo. Endocr Rev. 2013;34(1):84–129.

    Article  CAS  PubMed  Google Scholar 

  47. Shen L, Liu Z, Gong J, Zhang L, Wang L, Magdalou J, et al. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats. Toxicol Appl Pharmacol. 2014;274(2):263–73.

    Article  CAS  PubMed  Google Scholar 

  48. Harper KM, Tunc-Ozcan E, Graf EN, Redei EE. Intergenerational effects of prenatal ethanol on glucose tolerance and insulin response. Physiol Genomics. 2014;46(5):159–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Dobson CC, Mongillo DL, Brien DC, Stepita R, Poklewska-Koziell M, Winterborn A, et al. Chronic prenatal ethanol exposure increases adiposity and disrupts pancreatic morphology in adult guinea pig offspring. Nutr Diabetes. 2012;2:e57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Dobson CC, Thevasundaram K, Mongillo DL, Winterborn A, Holloway AC, Brien JF, et al. Chronic prenatal ethanol exposure alters expression of central and peripheral insulin signaling molecules in adult guinea pig offspring. Alcohol. 2014;48(7):687–93.

    Article  CAS  PubMed  Google Scholar 

  51. Bauldry S, Shanahan MJ, Boardman JD, Miech RA, Macmillan R. A life course model of self-rated health through adolescence and young adulthood. Soc Sci Med. 2012;75(7):1311–20.

    Article  PubMed Central  PubMed  Google Scholar 

  52. SAMHSA (Substance Abuse and Mental Health Services Administration). Results from the 2010 national survey on drug use and health: summary of national findings. Office of Applied Studies, NSDUH Series H-41, Rockville, Md, USA, 2011.

  53. Plessinger MA, Woods Jr JR. Cocaine in pregnancy. Recent data on maternal and fetal risks. Obstet Gynecol Clin N Am. 1998;25(1):99–118.

    Article  CAS  Google Scholar 

  54. Cressman AM, Natekar A, Kim E, Koren G, Bozzo P. Cocaine abuse during pregnancy. J Obstet Gynaecol Can. 2014;36(7):628–31.

    PubMed  Google Scholar 

  55. Lipshultz SE, Frassica JJ, Orav J. Cardiovascular abnormalities in infants prenatally exposed to cocaine. J Pediatr. 1991;118:44–51.

    Article  CAS  PubMed  Google Scholar 

  56. Messiah SE, Lipshultz SE, Miller TL, Accornero VH, Bandstra ES. Assessing latent effects of prenatal cocaine exposure on growth and risk of cardiometabolic disease in late adolescence: design and methods. Int J Pediatr. 2012;2012:467918.

    PubMed Central  PubMed  Google Scholar 

  57. Messiah SE, Miller TL, Lipshultz SE, Bandstra ES. Potential latent effects of prenatal cocaine exposure on growth and the risk of cardiovascular and metabolic disease in childhood. Prog Pediatr Cardiol. 2011;31(1):59–65.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Shankaran S, Bann CM, Bauer CR, Lester BM, Bada HS, Das A, et al. Prenatal cocaine exposure and BMI and blood pressure at 9 years of age. J Hypertens. 2010;28(6):1166–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. LaGasse LL, Gaskins RB, Bada HS, Shankaran S, Liu J, Lester BM, et al. Prenatal cocaine exposure and childhood obesity at nine years. Neurotoxicol Teratol. 2011;33(2):188–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Ganapathy V, Prasad PD, Ganapathy ME, Leibach FH. Drugs of abuse and placental transport. Adv Drug Deliv Rev. 1999;38(1):99–110.

    Article  CAS  PubMed  Google Scholar 

  61. Suzuki K, Minei LJ, Johnson EE. Effect of nicotine upon uterine blood flow in the pregnant rhesus monkey. Am J Obstet Gynecol. 1980;136(8):1009–13.

    CAS  PubMed  Google Scholar 

  62. Aliyu MH, Wilson RE, Zoorob R, Brown K, Alio AP, Clayton H, et al. Prenatal alcohol consumption and fetal growth restriction: potentiation effect by concomitant smoking. Nicotine Tob Res. 2009;11(1):36–43.

    Article  PubMed  Google Scholar 

  63. Hayatbakhsh MR, Flenady VJ, Gibbons KS, Kingsbury AM, Hurrion E, Mamun AA, et al. Birth outcomes associated with cannabis use before and during pregnancy. Pediatr Res. 2012;71(2):215–9.

    Article  PubMed  Google Scholar 

  64. Liu AJ, Sithamparanathan S, Jones MP, Cook CM, Nanan R. Growth restriction in pregnancies of opioid-dependent mothers. Arch Dis Child Fetal Neonatal Ed. 2010;95(4):F258–62.

    Article  CAS  PubMed  Google Scholar 

  65. Huber G, Seelbach-Göbel B. Substance abuse and pregnancy from an obstetric point of view. Z Geburtshilfe Neonatol. 2014;218(4):142–8.

    Article  CAS  PubMed  Google Scholar 

  66. Ross LJ, Wilson M, Banks M, Rezannah F, Daglish M. Prevalence of malnutrition and nutritional risk factors in patients undergoing alcohol and drug treatment. Nutrition. 2012;28(7-8):738–43.

    Article  PubMed  Google Scholar 

  67. Santolaria F, Gonzalez-Reimers E. Alcohol and nutrition: an integrated perspective. In: Watson RR, Preedy VR, editors. Nutrition and alcohol: linking nutrient interactions and dietary intake. Boca Raton: CRC Press; 2004. p. 3–17.

    Google Scholar 

  68. Zoli M, Picciotto MR. Nicotinic regulation of energy homeostasis. Nicotine Tob Res. 2012;14(11):1270–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Ersche KD, Stochl J, Woodward JM, Fletcher PC. The skinny on cocaine: insights into eating behavior and body weight in cocaine-dependent men. Appetite. 2013;71:75–80.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Aubin HJ, Farley A, Lycett D, Lahmek P, Aveyard P. Weight gain in smokers after quitting cigarettes: meta-analysis. BMJ. 2012;345:e4439.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Sofuoglu M, Dudish-Poulsen S, Poling J, Mooney M, Hatsukami DK. The effect of individual cocaine withdrawal symptoms on outcomes in cocaine users. Addict Behav. 2005;30(6):1125–34.

    Article  PubMed  Google Scholar 

  72. Cocores JA, Gold MS. The Salted Food Addiction Hypothesis may explain overeating and the obesity epidemic. Med Hypotheses. 2009;73(6):892–9.

    Article  CAS  PubMed  Google Scholar 

  73. Vik T, Jacobsen G, Vatten L, Bakketeig LS. Pre- and post-natal growth in children of women who smoked in pregnancy. Early Hum Dev. 1996;45:245–55.

    Article  CAS  PubMed  Google Scholar 

  74. Ross MG, Desai M. Developmental programming of offspring obesity, adipogenesis, and appetite. Clin Obstet Gynecol. 2013;56(3):529–36.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Hanson MA, Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. 2014;94(4):1027–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Oksana Zabuga for the technical assistance in preparing this manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

A.M. Vaiserman declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vaiserman.

Additional information

This article is part of the Topical Collection on Lifestyle Management to Reduce Diabetes/Cardiovascular Risk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaiserman, A.M. Early-Life Exposure to Substance Abuse and Risk of Type 2 Diabetes in Adulthood. Curr Diab Rep 15, 48 (2015). https://doi.org/10.1007/s11892-015-0624-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0624-3

Keywords

Navigation