Skip to main content
Log in

Role of B Lymphocytes in the Pathogenesis of Type 1 Diabetes

  • Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Though type 1 diabetes (T1D) is considered a T cell-mediated autoimmune disorder, recent evidence indicates that B cells play a critical role in disease. This conclusion is based in part on the success of anti-CD20 (rituximab) therapy, which by broadly depleting B cells delays disease progression in non-obese diabetic (NOD) mice and new-onset patients. B cell receptor (BCR) specificity to islet autoantigen is key. NOD mice whose B cell repertoire is biased toward insulin reactivity show increased disease development, while bias away from insulin reactivity largely prevents disease. Although the operative disease-promoting B cell effector function remains undefined, islet-antigen reactive B cells function in antigen presentation to diabetogenic CD4 T cells. Other studies implicate B cells in antigen presentation to CD8 T cells. B cell participation in TID appears predicated on faulty B cell tolerance. Here, we review extant findings implicating B cells in T1D in mice and men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Serreze DV, Chapman HD, Varnum DS, Hanson MS, Reifsnyder PC, Richard SD, et al. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new "speed congenic" stock of NOD.Ig mu null mice. J Exp Med. 1996;184(5):2049–53.

    Article  CAS  PubMed  Google Scholar 

  2. Hu CY, Rodriguez-Pinto D, Du W, Ahuja A, Henegariu O, Wong FS, et al. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin Invest. 2007;117(12):3857–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Xiu Y, Wong CP, Bouaziz JD, Hamaguchi Y, Wang Y, Pop SM, et al. B lymphocyte depletion by CD20 monoclonal antibody prevents diabetes in nonobese diabetic mice despite isotype-specific differences in Fc gamma R effector functions. J Immunol. 2008;180(5):2863–75.

    Article  CAS  PubMed  Google Scholar 

  4. Fiorina P, Vergani A, Dada S, Jurewicz M, Wong M, Law K, et al. Targeting CD22 reprograms B-cells and reverses autoimmune diabetes. Diabetes. 2008;57(11):3013–24. doi:10.2337/db08-0420.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Marino E, Villanueva J, Walters S, Liuwantara D, Mackay F, Grey ST. CD4(+)CD25(+) T-cells control autoimmunity in the absence of B-cells. Diabetes. 2009;58(7):1568–77. doi:10.2337/db08-1504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Zekavat G, Rostami SY, Badkerhanian A, Parsons RF, Koeberlein B, Yu M, et al. In vivo BLyS/BAFF neutralization ameliorates islet-directed autoimmunity in nonobese diabetic mice. J Immunol. 2008;181(11):8133–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hulbert C, Riseili B, Rojas M, Thomas JW. B cell specificity contributes to the outcome of diabetes in nonobese diabetic mice. J Immunol. 2001;167(10):5535–8.

    Article  CAS  PubMed  Google Scholar 

  8. Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, Becker DJ, Gitelman SE, Goland R, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med. 2009;361(22):2143–52. Seminal clinical study shows that anti-CD20 (Rituximab) therapy, which by broadly depleting B cells can delay disease progression in new onset human patients.

    Article  CAS  PubMed  Google Scholar 

  9. Gurcan HM, Keskin DB, Stern JN, Nitzberg MA, Shekhani H, Ahmed AR. A review of the current use of rituximab in autoimmune diseases. Int Immunopharmacol. 2009;9(1):10–25. doi:10.1016/j.intimp.2008.10.004.

    Article  PubMed  Google Scholar 

  10. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301(5638):1374–7. doi:10.1126/science.1086907.

    Article  CAS  PubMed  Google Scholar 

  11. Rowland SL, Tuttle K, Torres RM, Pelanda R. Antigen and cytokine receptor signals guide the development of the naive mature B cell repertoire. Immunol Res. 2013;55(1–3):231–40. doi:10.1007/s12026-012-8366-7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Nemazee D. Receptor editing in lymphocyte development and central tolerance. Nat Rev Immunol. 2006;6(10):728–40. doi:10.1038/nri1939.

    Article  CAS  PubMed  Google Scholar 

  13. Nemazee D, Weigert M. Revising B cell receptors. J Exp Med. 2000;191(11):1813–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Yarkoni Y, Getahun A, Cambier JC. Molecular underpinning of B-cell anergy. Immunol Rev. 2010;237(1):249–63. doi:10.1111/j.1600-065X.2010.00936.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cambier JC, Getahun A. B cell activation versus anergy; the antigen receptor as a molecular switch. Immunol Lett. 2010;128(1):6–7. doi:10.1016/j.imlet.2009.09.006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cambier JC, Gauld SB, Merrell KT, Vilen BJ. B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat Rev Immunol. 2007;7(8):633–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gauld SB, Benschop RJ, Merrell KT, Cambier JC. Maintenance of B cell anergy requires constant antigen receptor occupancy and signaling. Nat Immunol. 2005;6(11):1160–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar KR, Mohan C. Understanding B-cell tolerance through the use of immunoglobulin transgenic models. Immunol Res. 2008;40(3):208–23. doi:10.1007/s12026-007-8008-7.

    Article  CAS  PubMed  Google Scholar 

  19. Healy JI, Goodnow CC. Positive versus negative signaling by lymphocyte antigen receptors. Annu Rev Immunol. 1998;16:645–70. doi:10.1146/annurev.immunol.16.1.645.

    Article  CAS  PubMed  Google Scholar 

  20. Silveira PA, Dombrowsky J, Johnson E, Chapman HD, Nemazee D, Serreze DV. B cell selection defects underlie the development of diabetogenic APCs in nonobese diabetic mice. J Immunol. 2004;172(8):5086–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cox SL, Stolp J, Hallahan NL, Counotte J, Zhang W, Serreze DV, et al. Enhanced responsiveness to T-cell help causes loss of B-lymphocyte tolerance to a beta-cell neo-self-antigen in type 1 diabetes prone NOD mice. Eur J Immunol. 2010;40(12):3413–25. doi:10.1002/eji.201040817. Prior studies of NOD B cell tolerance using mice transgenic for both anti-hen egg lysozyme (HEL) BCR and HEL autoantigen expressed HEL systemically. Here autoantigen expression is driven by the insulin promoter and confined to the pancreas. Thus, it is a far more physiologically relevant model to understand the roots of T1D pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  22. Quinn 3rd WJ, Noorchashm N, Crowley JE, Reed AJ, Noorchashm H, Naji A, et al. Cutting edge: impaired transitional B cell production and selection in the nonobese diabetic mouse. J Immunol. 2006;176(12):7159–64.

    Article  CAS  PubMed  Google Scholar 

  23. Merrell KT, Benschop RJ, Gauld SB, Aviszus K, Decote-Ricardo D, Wysocki LJ, et al. Identification of anergic B cells within a wild-type repertoire. Immunity. 2006;25(6):953–62.

    Article  CAS  PubMed  Google Scholar 

  24. Rolf J, Motta V, Duarte N, Lundholm M, Berntman E, Bergman ML, et al. The enlarged population of marginal zone/CD1d(high) B lymphocytes in nonobese diabetic mice maps to diabetes susceptibility region Idd11. J Immunol. 2005;174(8):4821–7.

    Article  CAS  PubMed  Google Scholar 

  25. Wither JE, Roy V, Brennan LA. Activated B cells express increased levels of costimulatory molecules in young autoimmune NZB and (NZB x NZW)F(1) mice. Clin Immunol. 2000;94(1):51–63. doi:10.1006/clim.1999.4806.

    Article  CAS  PubMed  Google Scholar 

  26. Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001;14(5):617–29.

    Article  CAS  PubMed  Google Scholar 

  27. Attanavanich K, Kearney JF. Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. J Immunol. 2004;172(2):803–11.

    Article  CAS  PubMed  Google Scholar 

  28. Panigrahi AK, Goodman NG, Eisenberg RA, Rickels MR, Naji A, Luning Prak ET. RS rearrangement frequency as a marker of receptor editing in lupus and type 1 diabetes. J Exp Med. 2008;205(13):2985–94. doi:10.1084/jem.20082053.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Habib T, Funk A, Rieck M, Brahmandam A, Dai X, Panigrahi AK, et al. Altered B cell homeostasis is associated with type I diabetes and carriers of the PTPN22 allelic variant. J Immunol. 2012;188(1):487–96. doi:10.4049/jimmunol.1102176. Seminal work showing a human PTPN22 variant is capable of altering the integrity of B cell tolerance and ultimately increasing the risk of T1D.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Orban T, Sosenko JM, Cuthbertson D, Krischer JP, Skyler JS, Jackson R, et al. Pancreatic islet autoantibodies as predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care. 2009;32(12):2269–74. doi:10.2337/dc09-0934.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A. 2007;104(43):17040–5. doi:10.1073/pnas.0705894104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Vehik K, Beam CA, Mahon JL, Schatz DA, Haller MJ, Sosenko JM, et al. Development of autoantibodies in the TrialNet Natural History Study. Diabetes Care. 2011;34(9):1897–901. doi:10.2337/dc11-0560.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Williams AJ, Norcross AJ, Dix RJ, Gillespie KM, Gale EA, Bingley PJ. The prevalence of insulin autoantibodies at the onset of type 1 diabetes is higher in males than females during adolescence. Diabetologia. 2003;46(10):1354–6. doi:10.1007/s00125-003-1197-2.

    Article  CAS  PubMed  Google Scholar 

  34. Vardi P, Ziegler AG, Mathews JH, Dib S, Keller RJ, Ricker AT, et al. Concentration of insulin autoantibodies at onset of type I diabetes. Inverse log-linear correlation with age. Diabetes Care. 1988;11(9):736–9.

    CAS  PubMed  Google Scholar 

  35. Bonifacio E, Atkinson M, Eisenbarth G, Serreze D, Kay TW, Lee-Chan E, et al. International Workshop on Lessons From Animal Models for Human Type 1 Diabetes: identification of insulin but not glutamic acid decarboxylase or IA-2 as specific autoantigens of humoral autoimmunity in nonobese diabetic mice. Diabetes. 2001;50(11):2451–8.

    Article  CAS  PubMed  Google Scholar 

  36. Yu L, Robles DT, Abiru N, Kaur P, Rewers M, Kelemen K, et al. Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci U S A. 2000;97(4):1701–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wong FS, Wen L, Tang M, Ramanathan M, Visintin I, Daugherty J, et al. Investigation of the role of B-cells in type 1 diabetes in the NOD mouse. Diabetes. 2004;53(10):2581–7.

    Article  CAS  PubMed  Google Scholar 

  38. Garabatos N, Alvarez R, Carrillo J, Carrascal J, Izquierdo C, Chapman HD, et al. In vivo detection of peripherin-specific autoreactive B cells during type 1 diabetes pathogenesis. J Immunol. 2014;192(7):3080–90. doi:10.4049/jimmunol.1301053. Prior to publication of this paper, insulin-specfic B cells were the only islet autoantigen specific B cells identified in the NOD mouse model. Though the importance of peripherin as a pancreatic antigen remains to be determined, the presence of the these B cells in the pancreas is an intriguing finding.

    Article  CAS  PubMed  Google Scholar 

  39. Noorchashm H, Lieu YK, Noorchashm N, Rostami SY, Greeley SA, Schlachterman A, et al. I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet beta cells of nonobese diabetic mice. J Immunol. 1999;163(2):743–50.

    CAS  PubMed  Google Scholar 

  40. Marino E, Tan B, Binge L, Mackay CR, Grey ST. B-cell cross-presentation of autologous antigen precipitates diabetes. Diabetes. 2012;61(11):2893–905. doi:10.2337/db12-0006. A clear demonstration of the importance of B cells in cross presenting autoantigen to self-reactive CD8+ T cells.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hussain S, Delovitch TL. Dysregulated B7-1 and B7-2 expression on nonobese diabetic mouse B cells is associated with increased T cell costimulation and the development of insulitis. J Immunol. 2005;174(2):680–7.

    Article  CAS  PubMed  Google Scholar 

  42. Silveira PA, Johnson E, Chapman HD, Bui T, Tisch RM, Serreze DV. The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen-specific immunoglobulin receptors. Eur J Immunol. 2002;32(12):3657–66.

    Article  CAS  PubMed  Google Scholar 

  43. Kendall PL, Case JB, Sullivan AM, Holderness JS, Wells KS, Liu E, et al. Tolerant anti-insulin B cells are effective APCs. J Immunol. 2013;190(6):2519–26. doi:10.4049/jimmunol.1202104. Though the study is largely an in vitro demonstration of antigen presentation, it does show that insulin-binding 125Tg B cells are more competent presenters of insulin peptides than their non insulin-binding counterparts. Suggesting they may be in vivo potent antigen presenting cells as well.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Brodie GM, Wallberg M, Santamaria P, Wong FS, Green EA. B-cells promote intra-islet CD8+ cytotoxic T-cell survival to enhance type 1 diabetes. Diabetes. 2008;57(4):909–17. doi:10.2337/db07-1256.

    Article  CAS  PubMed  Google Scholar 

  45. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes. 2008;57(4):1084–92. doi:10.2337/db07-1331.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155(2):173–81. doi:10.1111/j.1365-2249.2008.03860.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. In't VP. Insulitis in human type 1 diabetes: a comparison between patients and animal models. Semin Immunopathol. 2014. doi:10.1007/s00281-014-0438-4.

    Google Scholar 

  48. Alanentalo T, Loren CE, Larefalk A, Sharpe J, Holmberg D, Ahlgren U. High-resolution three-dimensional imaging of islet-infiltrate interactions based on optical projection tomography assessments of the intact adult mouse pancreas. J Biomed Opt. 2008;13(5):054070. doi:10.1117/1.3000430.

    Article  PubMed  Google Scholar 

  49. In't VP. Insulitis in human type 1 diabetes: the quest for an elusive lesion. Islets. 2011;3(4):131–8.

    Article  Google Scholar 

  50. Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL. Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol. 2001;167(2):1081–9.

    Article  CAS  PubMed  Google Scholar 

  51. Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity. 2008;28(5):639–50. doi:10.1016/j.immuni.2008.03.017.

    Article  CAS  PubMed  Google Scholar 

  52. Di Caro V, Phillips B, Engman C, Harnaha J, Trucco M, Giannoukakis N. Involvement of suppressive B-lymphocytes in the mechanism of tolerogenic dendritic cell reversal of type 1 diabetes in NOD mice. PLoS One. 2014;9(1):e83575. doi:10.1371/journal.pone.0083575. Seminal demonstration of how tolerogenic dendritic cells may be exploited to expand a population of immunosuppressive B cells, widely referred to as B-regulatory cells (Bregs) and suppress T1D.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Montandon R, Korniotis S, Layseca-Espinosa E, Gras C, Megret J, Ezine S, et al. Innate pro-B-cell progenitors protect against type 1 diabetes by regulating autoimmune effector T cells. Proc Natl Acad Sci U S A. 2013;110(24):E2199–208. doi:10.1073/pnas.1222446110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Marino E, Silveira PA, Stolp J, Grey ST. B cell-directed therapies in type 1 diabetes. Trends Immunol. 2011;32(6):287–94. doi:10.1016/j.it.2011.03.006.

    Article  CAS  PubMed  Google Scholar 

  55. Henry RA, Kendall PL, Thomas JW. Autoantigen-specific B-cell depletion overcomes failed immune tolerance in type 1 diabetes. Diabetes. 2012;61(8):2037–44. doi:10.2337/db11-1746. Model approach of how specific targeting of B cells that recognize islet antigens effects disease development.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Rochelle M. Hinman and John C. Cambier declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Cambier.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinman, R.M., Cambier, J.C. Role of B Lymphocytes in the Pathogenesis of Type 1 Diabetes. Curr Diab Rep 14, 543 (2014). https://doi.org/10.1007/s11892-014-0543-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0543-8

Keywords

Navigation