Skip to main content

Advertisement

Log in

Bioengineered Sites for Islet Cell Transplantation

  • Transplantation (A Pileggi, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Although islet transplantation has demonstrated its potential use in treating type 1 diabetes, this remains limited by the need for daily immunosuppression. Islet encapsulation was then proposed with a view to avoiding any immunosuppressive regimen and related side effects. In order to obtain a standard clinical procedure in terms of safety and reproducibility, two important factors have to be taken into account: the encapsulation design (which determines the graft volume) and the implantation site. Indeed, the implantation site should meet certain requirements: (1) its space must be large enough for the volume of transplanted tissues; (2) there must be proximity to abundant vascularization with a good oxygen supply; (3) there must be real-time access to physiologically representative blood glucose levels; (4) there must be easy access for implantation and the reversibility of the procedure (for safety); and finally, (5) the site should have minimal early inflammatory reaction and promote long-term survival. The aim of this article is to review possible preclinical/clinical implantation sites (in comparison with free islets) for encapsulated islet transplantation as a function of the encapsulation design: macro/microcapsules and conformal coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Shapiro AMJ, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355:1318–30.

    Article  PubMed  CAS  Google Scholar 

  2. • Berney T, Ferrari-Lacraz S, Bühler L, Oberholzer J, Marangon N, Philippe J, et al. Long-term insulin-independence after allogeneic islet transplantation for type 1 diabetes: over the 10-year mark. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2009;9:419–23. This study relates for the first time the capacity of islet transplantation to cure type 1 diabetes with a long-term follow-up of more than 10 years.

    Article  CAS  Google Scholar 

  3. Carlsson PO, Palm F, Andersson A, Liss P. Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site. Diabetes. 2001;50:489–95.

    Article  PubMed  CAS  Google Scholar 

  4. Robertson RP. Islet transplantation as a treatment for diabetes - a work in progress. N Engl J Med. 2004;350:694–705.

    Article  PubMed  CAS  Google Scholar 

  5. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, et al. Five-year follow-up after clinical islet transplantation. Diabetes. 2005;54:2060–9.

    Article  PubMed  CAS  Google Scholar 

  6. Sutherland DE, Gores PF, Hering BJ, Wahoff D, McKeehen DA, Gruessner RW. Islet transplantation: an update. Diabetes Metab Rev. 1996;12:137–50.

    PubMed  CAS  Google Scholar 

  7. Markmann JF, Rosen M, Siegelman ES, Soulen MC, Deng S, Barker CF, et al. Magnetic resonance-defined periportal steatosis following intraportal islet transplantation: a functional footprint of islet graft survival? Diabetes. 2003;52:1591–4.

    Article  PubMed  CAS  Google Scholar 

  8. Lau J, Mattsson G, Carlsson C, Nyqvist D, Köhler M, Berggren P-O, et al. Implantation site-dependent dysfunction of transplanted pancreatic islets. Diabetes. 2007;56:1544–50.

    Article  PubMed  CAS  Google Scholar 

  9. • Lau J, Kampf C, Mattsson G, Nyqvist D, Köhler M, Berggren P-O, et al. Beneficial role of pancreatic microenvironment for angiogenesis in transplanted pancreatic islets. Cell Transplant. 2009;18:23–30. This work demonstrated the importance of host vasculature development in islets after transplantation with a view to selecting the most appropriate implantation site.

    Article  PubMed  Google Scholar 

  10. Stagner JI, Rilo HL, White KK. The pancreas as an islet transplantation site. Confirmation in a syngeneic rodent and canine autotransplant model. Jop J Pancreas. 2007;8:628–36.

    Google Scholar 

  11. Hayek A, Beattie GM. Intrapancreatic islet transplantation in experimental diabetes in the rat. Metabolism. 1992;41:1367–9.

    Article  PubMed  CAS  Google Scholar 

  12. Rilo HL, Fontes PA, Nussler AK, Demetris AJ, Carroll PB, Ildstad ST, et al. Intrapancreatic islet transplantation as a potential solution to chronic failure of intraportal islet grafts. Transplant Proc. 1993;25:988.

    PubMed  CAS  Google Scholar 

  13. De Carlo E, Baiguera S, Conconi MT, Vigolo S, Grandi C, Lora S, et al. Pancreatic acellular matrix supports islet survival and function in a synthetic tubular device: in vitro and in vivo studies. Int J Mol Med. 2010;25:195–202.

    PubMed  Google Scholar 

  14. Mirmalek-Sani S-H, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M, et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials. 2013;34:5488–95.

    Article  PubMed  CAS  Google Scholar 

  15. Finch DR, Wise PH, Morris PJ. Successful intra-splenic transplantation of syngeneic and allogeneic isolated pancreatic islets. Diabetologia. 1977;13:195–9.

    Article  PubMed  CAS  Google Scholar 

  16. Warnock GL, Dabbs KD, Evans MG, Cattral MS, Kneteman NM, Rajotte RV. Critical mass of islets that function after implantation in a large mammalian. Horm Metab Res Suppl Ser. 1990;25:156–61.

    CAS  Google Scholar 

  17. Ao Z, Matayoshi K, Lakey JR, Rajotte RV, Warnock GL. Survival and function of purified islets in the omental pouch site of outbred dogs. Transplantation. 1993;56:524–9.

    Article  PubMed  CAS  Google Scholar 

  18. Gustavson SM, Rajotte RV, Hunkeler D, Lakey JRT, Edgerton DS, Neal DW, et al. Islet auto-transplantation into an omental or splenic site results in a normal beta cell but abnormal alpha cell response to mild non-insulin-induced hypoglycemia. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2005;5:2368–77.

    Article  Google Scholar 

  19. Hecht G, Eventov-Friedman S, Rosen C, Shezen E, Tchorsh D, Aronovich A, et al. Embryonic pig pancreatic tissue for the treatment of diabetes in a nonhuman primate model. Proc Natl Acad Sci U S A. 2009;106:8659–64.

    Article  PubMed  CAS  Google Scholar 

  20. Caiazzo R, Gmyr V, Hubert T, Delalleau N, Lamberts R, Moerman E, et al. Evaluation of alternative sites for islet transplantation in the minipig: interest and limits of the gastric submucosa. Transplant Proc. 2007;39:2620–3.

    Article  PubMed  CAS  Google Scholar 

  21. • Echeverri GJ, McGrath K, Bottino R, Hara H, Dons EM, van der Windt DJ, et al. Endoscopic gastric submucosal transplantation of islets (ENDO-STI): technique and initial results in diabetic pigs. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2009;9:2485–96. This preclinical experimental study demonstrated the potential of a minimal invasive procedure for transplanting islets into the gastric submucosal.

    Article  CAS  Google Scholar 

  22. Wszola M, Berman A, Fabisiak M, Domagala P, Zmudzka M, Kieszek R, et al. TransEndoscopic Gastric SubMucosa Islet Transplantation (eGSM-ITx) in pigs with streptozotocine induced diabetes - technical aspects of the procedure - preliminary report. Ann Transplant Q Pol Transplant Soc. 2009;14:45–50.

    Google Scholar 

  23. Kakabadze Z, Gupta S, Brandhorst D, Korsgren O, Berishvili E. Long-term engraftment and function of transplanted pancreatic islets in vascularized segments of small intestine. Transpl Int Off J Eur Soc Organ Transplant. 2011;24:175–83.

    Article  Google Scholar 

  24. Gray DW. Islet transplantation and glucose regulation. World J Surg. 2001;25:497–502.

    Article  PubMed  CAS  Google Scholar 

  25. Mellgren A, Schnell Landström AH, Petersson B, Andersson A. The renal subcapsular site offers better growth conditions for transplanted mouse pancreatic islet cells than the liver or spleen. Diabetologia. 1986;29:670–2.

    Article  PubMed  CAS  Google Scholar 

  26. Hiller WF, Klempnauer J, Lück R, Steiniger B. Progressive deterioration of endocrine function after intraportal but not kidney subcapsular rat islet transplantation. Diabetes. 1991;40:134–40.

    Article  PubMed  CAS  Google Scholar 

  27. Kim H-I, Yu JE, Park C-G, Kim S-J. Comparison of four pancreatic islet implantation sites. J Korean Med Sci. 2010;25:203–10.

    Article  PubMed  CAS  Google Scholar 

  28. • Rajab A, Buss J, Diakoff E, Hadley GA, Osei K, Ferguson RM. Comparison of the portal vein and kidney subcapsule as sites for primate islet autotransplantation. Cell Transplant. 2008;17:1015–23. This experimental study demonstrated the superiority of the portal vein for islet transplantation, in comparison with the kidney subcapsule, in terms of blood glucose control.

    Article  PubMed  Google Scholar 

  29. • Svensson J, Lau J, Sandberg M, Carlsson P-O. High vascular density and oxygenation of pancreatic islets transplanted in clusters into striated muscle. Cell Transplant. 2011;20:783–8. The work demonstrated that the intramuscular site provides excellent conditions for vascular engraftment after islet transplantation.

    Article  PubMed  Google Scholar 

  30. Carlsson PO, Palm F, Andersson A, Liss P. Chronically decreased oxygen tension in rat pancreatic islets transplanted under the kidney capsule. Transplantation. 2000;69:761–6.

    Article  PubMed  CAS  Google Scholar 

  31. Weber CJ, Hardy MA, Pi-Sunyer F, Zimmerman E, Reemtsma K. Tissue culture preservation and intramuscular transplantation of pancreatic islets. Surgery. 1978;84:166–74.

    PubMed  CAS  Google Scholar 

  32. Rafael E, Tibell A, Rydén M, Lundgren T, Sävendahl L, Borgström B, et al. Intramuscular autotransplantation of pancreatic islets in a 7-year-old child: a 2-year follow-up. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2008;8:458–62.

    Article  CAS  Google Scholar 

  33. • Pattou F, Kerr-Conte J, Wild D. GLP-1-receptor scanning for imaging of human beta cells transplanted in muscle. N Engl J Med. 2010;363:1289–90. This clinical study demonstrated for the first time the concept of intramuscular transplantation of islets in the case of autograft.

    Article  PubMed  Google Scholar 

  34. • Christoffersson G, Henriksnäs J, Johansson L, Rolny C, Ahlström H, Caballero-Corbalan J, et al. Clinical and experimental pancreatic islet transplantation to striated muscle: establishment of a vascular system similar to that in native islets. Diabetes. 2010;59:2569–78. This study postulated that recruited neutrophils are crucial for the functionally restored intra-islet blood perfusion following transplantation to striated muscle under experimental and clinical situations.

    Article  PubMed  CAS  Google Scholar 

  35. Lund T, Korsgren O, Aursnes IA, Scholz H, Foss A. Sustained reversal of diabetes following islet transplantation to striated musculature in the rat. J Surg Res. 2010;160:145–54.

    Article  PubMed  CAS  Google Scholar 

  36. Cantarelli E, Melzi R, Mercalli A, Sordi V, Ferrari G, Lederer CW, et al. Bone marrow as an alternative site for islet transplantation. Blood. 2009;114:4566–74.

    Article  PubMed  CAS  Google Scholar 

  37. Rayat GR, Korbutt GS, Elliott JF, Rajotte RV. Survival and function of syngeneic rat islet grafts placed within the thymus versus under the kidney capsule. Cell Transplant. 1997;6:597–602.

    Article  PubMed  CAS  Google Scholar 

  38. Tze WJ, Tai J. Immunological studies in diabetic rat recipients with a pancreatic islet cell allograft in the brain. Transplantation. 1989;47:1053–7.

    Article  PubMed  CAS  Google Scholar 

  39. Xin Z-L, Ge S-L, Wu X-K, Jia Y-J, Hu H-T. Intracerebral xenotransplantation of semipermeable membrane- encapsuled pancreatic islets. World J Gastroenterol. 2005;11:5714–7.

    PubMed  Google Scholar 

  40. Selawry HP, Whittington KB, Bellgrau D. Abdominal intratesticular islet-xenograft survival in rats. Diabetes. 1989;38 Suppl 1:220–3.

    PubMed  Google Scholar 

  41. Perez VL, Caicedo A, Berman DM, Arrieta E, Abdulreda MH, Rodriguez-Diaz R, et al. The anterior chamber of the eye as a clinical transplantation site for the treatment of diabetes: a study in a baboon model of diabetes. Diabetologia. 2011;54:1121–6.

    Article  PubMed  CAS  Google Scholar 

  42. Beck J, Angus R, Madsen B, Britt D, Vernon B, Nguyen KT. Islet encapsulation: strategies to enhance islet cell functions. Tissue Eng. 2007;13:589–99.

    Article  PubMed  CAS  Google Scholar 

  43. Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC. Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res. 1995;29:1517–24.

    Article  PubMed  CAS  Google Scholar 

  44. Sörenby AK, Wu GS, Zhu S, Wernerson AM, Sumitran-Holgersson S, Tibell ABH. Macroencapsulation protects against sensitization after allogeneic islet transplantation in rats. Transplantation. 2006;82:393–7.

    Article  PubMed  Google Scholar 

  45. Sweet IR, Yanay O, Waldron L, Gilbert M, Fuller JM, Tupling T, et al. Treatment of diabetic rats with encapsulated islets. J Cell Mol Med. 2008;12:2644–50.

    Article  PubMed  Google Scholar 

  46. Tibell A, Rafael E, Wennberg L, Nordenström J, Bergström M, Geller RL, et al. Survival of macroencapsulated allogeneic parathyroid tissue one year after transplantation in nonimmunosuppressed humans. Cell Transplant. 2001;10:591–9.

    PubMed  CAS  Google Scholar 

  47. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210:908–10.

    Article  PubMed  CAS  Google Scholar 

  48. Calafiore R, Basta G, Luca G, Boselli C, Bufalari A, Bufalari A, et al. Transplantation of pancreatic islets contained in minimal volume microcapsules in diabetic high mammalians. Ann N Y Acad Sci. 1999;875:219–32.

    Article  PubMed  CAS  Google Scholar 

  49. • Teramura Y, Iwata H. Bioartificial pancreas microencapsulation and conformal coating of islet of Langerhans. Adv Drug Deliv Rev. 2010;62:827–40. This article relates the concept of conformal coating for islet transplantation with a view to minimizing encapsulation size and promoting transplantation into the liver.

    Article  PubMed  CAS  Google Scholar 

  50. Lee DY, Lee S, Nam JH, Byun Y. Minimization of immunosuppressive therapy after islet transplantation: combined action of heme oxygenase-1 and PEGylation to islet. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2006;6:1820–8.

    Article  CAS  Google Scholar 

  51. Miura S, Teramura Y, Iwata H. Encapsulation of islets with ultra-thin polyion complex membrane through poly(ethylene glycol)-phospholipids anchored to cell membrane. Biomaterials. 2006;27:5828–35.

    Article  PubMed  CAS  Google Scholar 

  52. Teramura Y, Iwata H. Surface modification of islets with PEG-lipid for improvement of graft survival in intraportal transplantation. Transplantation. 2009;88:624–30.

    Article  PubMed  Google Scholar 

  53. Totani T, Teramura Y, Iwata H. Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains. Biomaterials. 2008;29:2878–83.

    Article  PubMed  CAS  Google Scholar 

  54. Cabric S, Sanchez J, Lundgren T, Foss A, Felldin M, Källen R, et al. Islet surface heparinization prevents the instant blood-mediated inflammatory reaction in islet transplantation. Diabetes. 2007;56:2008–15.

    Article  PubMed  CAS  Google Scholar 

  55. Stabler CL, Sun X-L, Cui W, Wilson JT, Haller CA, Chaikof EL. Surface re-engineering of pancreatic islets with recombinant azido-thrombomodulin. Bioconjug Chem. 2007;18:1713–5.

    Article  PubMed  CAS  Google Scholar 

  56. Teramura Y, Iwata H. Islet encapsulation with living cells for improvement of biocompatibility. Biomaterials. 2009;30:2270–5.

    Article  PubMed  CAS  Google Scholar 

  57. Cruise GM, Hegre OD, Lamberti FV, Hager SR, Hill R, Scharp DS, et al. In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. Cell Transplant. 1999;8:293–306.

    PubMed  CAS  Google Scholar 

  58. • Basta G, Montanucci P, Luca G, Boselli C, Noya G, Barbaro B, et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care. 2011;34:2406–9. This clinical work relates a long-term metabolic control in type 1 diabetes after microencapsulated islet transplantation into the peritoneal cavity.

    Article  PubMed  CAS  Google Scholar 

  59. Elliott RB, Escobar L, Tan PLJ, Muzina M, Zwain S, Buchanan C. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation. 2007;14:157–61.

    Article  PubMed  Google Scholar 

  60. • Tuch BE, Keogh GW, Williams LJ, Wu W, Foster JL, Vaithilingam V, et al. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care. 2009;32:1887–9. This clinical work relates the safety of microencapsulated islet transplantation into the peritoneal cavity.

    Article  PubMed  CAS  Google Scholar 

  61. Elliott RB, Escobar L, Tan PLJ, Garkavenko O, Calafiore R, Basta P, et al. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant Proc. 2005;37:3505–8.

    Article  PubMed  CAS  Google Scholar 

  62. Soon-Shiong P, Feldman E, Nelson R, Heintz R, Yao Q, Yao Z, et al. Long-term reversal of diabetes by the injection of immunoprotected islets. Proc Natl Acad Sci U S A. 1993;90:5843–7.

    Article  PubMed  CAS  Google Scholar 

  63. Sun Y, Ma X, Zhou D, Vacek I, Sun AM. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest. 1996;98:1417–22.

    Article  PubMed  CAS  Google Scholar 

  64. Wang W, Gu Y, Tabata Y, Miyamoto M, Hori H, Nagata N, et al. Reversal of diabetes in mice by xenotransplantation of a bioartificial pancreas in a prevascularized subcutaneous site. Transplantation. 2002;73:122–9.

    Article  PubMed  Google Scholar 

  65. Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet. 1994;343:950–1.

    Article  PubMed  CAS  Google Scholar 

  66. Calafiore R, Basta G, Luca G, Lemmi A, Montanucci MP, Calabrese G, et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care. 2006;29:137–8.

    Article  PubMed  Google Scholar 

  67. Berman DM, O’Neil JJ, Coffey LCK, Chaffanjon PCJ, Kenyon NM, Ruiz Jr P, et al. Long-term survival of nonhuman primate islets implanted in an omental pouch on a biodegradable scaffold. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2009;9:91–104.

    Article  CAS  Google Scholar 

  68. Sawyer RG, Spengler MD, Adams RB, Pruett TL. The peritoneal environment during infection. The effect of monomicrobial and polymicrobial bacteria on pO2 and pH. Ann Surg. 1991;213:253–60.

    Article  PubMed  CAS  Google Scholar 

  69. Figliuzzi M, Cornolti R, Plati T, Rajan N, Adobati F, Remuzzi G, et al. Subcutaneous xenotransplantation of bovine pancreatic islets. Biomaterials. 2005;26:5640–7.

    Article  PubMed  CAS  Google Scholar 

  70. Tatarkiewicz K, Hollister-Lock J, Quickel RR, Colton CK, Bonner-Weir S, Weir GC. Reversal of hyperglycemia in mice after subcutaneous transplantation of macroencapsulated islets. Transplantation. 1999;67:665–71.

    Article  PubMed  CAS  Google Scholar 

  71. Yang Z, Chen M, Fialkow LB, Ellett JD, Wu R, Nadler JL. Survival of pancreatic islet xenografts in NOD mice with the theracyte device. Transplant Proc. 2002;34:3349–50.

    Article  PubMed  CAS  Google Scholar 

  72. Dufrane D, van Steenberghe M, Goebbels R-M, Saliez A, Guiot Y, Gianello P. The influence of implantation site on the biocompatibility and survival of alginate encapsulated pig islets in rats. Biomaterials. 2006;27:3201–8.

    Article  PubMed  CAS  Google Scholar 

  73. • Dufrane D, Goebbels R-M, Gianello P. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation. 2010;90:1054–62. This preclinical work demonstrated that xenorejection can be overcome by the transplantation of macroencapsulated pig islets in the subcutaneous tissue of diabetic primates without any immunosuppression.

    Article  PubMed  Google Scholar 

  74. • Vériter S, Gianello P, Igarashi Y, Beaurin G, Ghyselinck A, Aouassar N, et al. Improvement of subcutaneous bioartificial pancreas vascularization and function by co-encapsulation of pig islets and mesenchymal stem cells in primates. Cell Transplant. 2013; This experimental work demonstrated that the in vivo function of macroencapsulated pig islets can be improved by the use of adipose mesenchymal stem cells with a view to promoting angiogenesis in the subcutaneous tissue.

  75. Vériter S, Aouassar N, Adnet P-Y, Paridaens M-S, Stuckman C, Jordan B, et al. The impact of hyperglycemia and the presence of encapsulated islets on oxygenation within a bioartificial pancreas in the presence of mesenchymal stem cells in a diabetic Wistar rat model. Biomaterials. 2011;32:5945–56.

    PubMed  Google Scholar 

  76. Rafael E, Wu GS, Hultenby K, Tibell A, Wernerson A. Improved survival of macroencapsulated islets of Langerhans by preimplantation of the immunoisolating device: a morphometric study. Cell Transplant. 2003;12:407–12.

    PubMed  CAS  Google Scholar 

  77. Sörenby AK, Kumagai-Braesch M, Sharma A, Hultenby KR, Wernerson AM, Tibell AB. Preimplantation of an immunoprotective device can lower the curative dose of islets to that of free islet transplantation: studies in a rodent model. Transplantation. 2008;86:364–6.

    Article  PubMed  Google Scholar 

  78. Valdés-González RA, Dorantes LM, Garibay GN, Bracho-Blanchet E, Mendez AJ, Dávila-Pérez R, et al. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur J Endocrinol Eur Fed Endocr Soc. 2005;153:419–27.

    Article  Google Scholar 

  79. Valdés-González RA, White DJG, Dorantes LM, Terán L, Garibay-Nieto GN, Bracho-Blanchet E, et al. Three-yr follow-up of a type 1 diabetes mellitus patient with an islet xenotransplant. Clin Transplant. 2007;21:352–7.

    Article  PubMed  Google Scholar 

  80. • Valdes-Gonzalez R, Rodriguez-Ventura AL, White DJG, Bracho-Blanchet E, Castillo A, Ramírez-González B, et al. Long-term follow-up of patients with type 1 diabetes transplanted with neonatal pig islets. Clin Exp Immunol. 2010;162:537–42. This clinical work demonstrated for the first time that encapsulated pig islets can control diabetes without any side effects after transplantation in patients.

    Article  PubMed  CAS  Google Scholar 

  81. Bloch K, Papismedov E, Yavriyants K, Vorobeychik M, Beer S, Vardi P. Photosynthetic oxygen generator for bioartificial pancreas. Tissue Eng. 2006;12:337–44.

    Article  PubMed  CAS  Google Scholar 

  82. Brandhorst H, Muehling B, Yamaya H, Henriksnaes J, Carlsson PO, Korsgren O, et al. New class of oxygen carriers improves islet isolation from long-term stored rat pancreata. Transplant Proc. 2008;40:393–4.

    Article  PubMed  CAS  Google Scholar 

  83. Maillard E, Sanchez-Dominguez M, Kleiss C, Langlois A, Sencier MC, Vodouhe C, et al. Perfluorocarbons: new tool for islets preservation in vitro. Transplant Proc. 2008;40:372–4.

    Article  PubMed  CAS  Google Scholar 

  84. Sakai T, Li S, Tanioka Y, Goto T, Tanaka T, Matsumoto I, et al. Intraperitoneal injection of oxygenated perfluorochemical improves the outcome of intraportal islet transplantation in a rat model. Transplant Proc. 2006;38:3289–92.

    Article  PubMed  CAS  Google Scholar 

  85. Fenge C, Klein C, Heuer C, Siegel U, Fraune E. Agitation, aeration and perfusion modules for cell culture bioreactors. Cytotechnology. 1993;11:233–44.

    Article  PubMed  CAS  Google Scholar 

  86. Emery AN, Jan DC, al-Rubeai M. Oxygenation of intensive cell-culture system. Appl Microbiol Biotechnol. 1995;43:1028–33.

    Article  PubMed  CAS  Google Scholar 

  87. De Bartolo L, Jarosch-Von Schweder G, Haverich A, Bader A. A novel full-scale flat membrane bioreactor utilizing porcine hepatocytes: cell viability and tissue-specific functions. Biotechnol Prog. 2000;16:102–8.

    Article  PubMed  Google Scholar 

  88. Tilles AW, Baskaran H, Roy P, Yarmush ML, Toner M. Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotechnol Bioeng. 2001;73:379–89.

    Article  PubMed  CAS  Google Scholar 

  89. Halban PA, Wollheim CB, Blondel B, Meda P, Niesor EN, Mintz DH. The possible importance of contact between pancreatic islet cells for the control of insulin release. Endocrinology. 1982;111:86–94.

    Article  PubMed  CAS  Google Scholar 

  90. Halban PA, Powers SL, George KL, Bonner-Weir S. Spontaneous reassociation of dispersed adult rat pancreatic islet cells into aggregates with three-dimensional architecture typical of native islets. Diabetes. 1987;36:783–90.

    Article  PubMed  CAS  Google Scholar 

  91. O’Sullivan ES, Johnson AS, Omer A, Hollister-Lock J, Bonner-Weir S, Colton CK, et al. Rat islet cell aggregates are superior to islets for transplantation in microcapsules. Diabetologia. 2010;53:937–45.

    Article  PubMed  Google Scholar 

  92. Cheng Y, Liu Y-F, Zhang J-L, Li T-M, Zhao N. Elevation of vascular endothelial growth factor production and its effect on revascularization and function of graft islets in diabetic rats. World J Gastroenterol. 2007;13:2862–6.

    PubMed  CAS  Google Scholar 

  93. McQuilling JP, Arenas-Herrera J, Childers C, Pareta RA, Khanna O, Jiang B, et al. New alginate microcapsule system for angiogenic protein delivery and immunoisolation of islets for transplantation in the rat omentum pouch. Transplant Proc. 2011;43:3262–4.

    Article  PubMed  CAS  Google Scholar 

  94. Wright Jr JR, Yang H, Dooley KC. Tilapia–a source of hypoxia-resistant islet cells for encapsulation. Cell Transplant. 1998;7:299–307.

    Article  PubMed  Google Scholar 

  95. Barkai U, Weir GC, Colton CK, Ludwig B, Bornstein SR, Brendel MD, et al. Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transplant. 2012.

  96. Ludwig B, Zimerman B, Steffen A, Yavriants K, Azarov D, Reichel A, et al. A novel device for islet transplantation providing immune protection and oxygen supply. Horm Metab Res Horm- Stoffwechselforschung Horm Métabolisme. 2010;42:918–22.

    Article  CAS  Google Scholar 

  97. Ito T, Itakura S, Todorov I, Rawson J, Asari S, Shintaku J, et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation. 2010;89:1438–45.

    Article  PubMed  Google Scholar 

  98. Park K-S, Kim Y-S, Kim J-H, Choi B, Kim S-H, Tan AH-K, et al. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation. 2010;89:509–17.

    PubMed  CAS  Google Scholar 

  99. Sakata N, Chan NK, Chrisler J, Obenaus A, Hathout E. Bone marrow cell cotransplantation with islets improves their vascularization and function. Transplantation. 2010;89:686–93.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Sophie Vériter declares no conflict of interest.

Pierre Gianello declares no conflict of interest.

Denis Dufrane declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Dufrane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vériter, S., Gianello, P. & Dufrane, D. Bioengineered Sites for Islet Cell Transplantation. Curr Diab Rep 13, 745–755 (2013). https://doi.org/10.1007/s11892-013-0412-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-013-0412-x

Keywords

Navigation