Current Diabetes Reports

, Volume 13, Issue 5, pp 624–632 | Cite as

Epigenetic Regulation of Pancreatic Islets

  • Cecile HaumaitreEmail author
Pathogenesis of Type 1 Diabetes (D Dabelea, Section Editor)


Epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNA expression, contribute to regulate islet cell development and function. Indeed, epigenetic mechanisms were recently shown to be involved in the control of endocrine cell fate decision, islet differentiation, β-cell identity, proliferation, and mature function. Epigenetic mechanisms can also contribute to the pathogenesis of complex diseases. Emerging knowledge regarding epigenetic mechanisms suggest that they may be involved in β-cell dysfunction and pathogenesis of diabetes. Epigenetic mechanisms could predispose to the diabetic phenotype such as decline of β-cell proliferation ability and β-cell failure, and account for complications associated with diabetes. Better understanding of epigenetic landscapes of islet differentiation and function may be useful to improve β-cell differentiation protocols and discover novel therapeutic targets for prevention and treatment of diabetes.


Epigenetics Regulation Endocrine cell differentiation Beta-cell function Methylation Histone deacetylase MicroRNA Diabetes Pancreatic islets 



This work was supported by the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale, the Université Pierre et Marie Curie (UPMC), and the funding EMERGENCE UPMC 2011. The author thanks Sophie Gournet for illustrations.

Compliance with Ethics Guidelines

Conflict of Interest

Cecile Haumaitre declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355:1318–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes & Dev. 2009;23:781–3.CrossRefGoogle Scholar
  3. 3.
    Bird A. DNA methylation patterns and epigenetic memory. Genes & Dev. 2002;16:6–21.CrossRefGoogle Scholar
  4. 4.
    Karnik SK, Chen H, McLean GW, Heit JJ, Gu X, Zhang AY, et al. Menin controls growth of pancreatic beta-cells in pregnant mice and promotes gestational diabetes mellitus. Science. 2007;318:806–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest. 2008;118:2316–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X, et al. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Molecular Endocrinol. 2012;26:1203–12.CrossRefGoogle Scholar
  7. 7.
    Collombat P, Hecksher-Sorensen J, Krull J, Berger J, Riedel D, Herrera PL, et al. Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J Clin Invest. 2007;117:961–70.PubMedCrossRefGoogle Scholar
  8. 8.
    Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature. 2010;464:1149–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Papizan JB, Singer RA, Tschen SI, Dhawan S, Friel JM, Hipkens SB, et al. Nkx2.2 repressor complex regulates islet beta-cell specification and prevents beta-to-alpha-cell reprogramming. Genes & Dev. 2011;25:2291–305.CrossRefGoogle Scholar
  10. 10.
    •• Dhawan S, Georgia S, Tschen SI, Fan G, Bhushan A. Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell. 2011;20:419–29. This article reported that deletion of the Dnmt1 DNA methyltransferase gene in pancreatic insulin-producing cells makes these cells convert into glucagon-producing cells. This suggests that epigenetic reprogramming of cell types with shared developmental history may be used to redirect cell fates and be an effective strategy for pancreatic β cell-replacement therapies for diabetes. PubMedCrossRefGoogle Scholar
  11. 11.
    Van Arensbergen J, Garcia-Hurtado J, Maestro MA, et al. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult beta cells. Genes & Dev. 2013;27:52–63.CrossRefGoogle Scholar
  12. 12.
    Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP, Jacobs JJ, Kieboom K, et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes & Dev. 2005;19:1438–43.CrossRefGoogle Scholar
  13. 13.
    Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature. 2006;443:453–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.CrossRefGoogle Scholar
  15. 15.
    Dhawan S, Tschen SI, Bhushan A. Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation. Genes & Dev. 2009;23:906–11.CrossRefGoogle Scholar
  16. 16.
    Chen H, Gu X, Su IH, Bottino R, Contreras JL, Tarakhovsky A, et al. Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes & Dev. 2009;23:975–85.CrossRefGoogle Scholar
  17. 17.
    van Arensbergen J, Garcia-Hurtado J, Moran I, Maestro MA, Xu X, Van de Casteele M. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res. 2010;20:722–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Bramswig NC, Everett LJ, Schug J, Dorrell C, Liu C, Luo Y, et al. Epigenomic plasticity enables human pancreatic α to β cell reprogramming. J Clin Invest. 2013;123:1275–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, et al. A map of open chromatin in human pancreatic islets. Nature Genet. 2010;42:255–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Bhandare R, Schug J, Le Lay J, Fox A, Smirnova O, Liu C, et al. Genome-wide analysis of histone modifications in human pancreatic islets. Genome Res. 2010;20:428–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Stitzel ML, Sethupathy P, Pearson DS, Chines PS, Song L, et al. Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab. 2010;12:443–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 2012;31:1405–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Keating ST, El-Osta A. Epigenetic changes in diabetes. Clinical Genet. 2013;[Epub ahead of print].Google Scholar
  24. 24.
    Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes. 2008;57:3189–98.PubMedCrossRefGoogle Scholar
  25. 25.
    Pirola L, Balcerczyk A, Tothill RW, et al. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Res. 2011;21:1601–15.PubMedCrossRefGoogle Scholar
  26. 26.
    Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10:32–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Haumaitre C, Lenoir O, Scharfmann R. Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol. 2008;28:6373–83.PubMedCrossRefGoogle Scholar
  28. 28.
    Haumaitre C, Lenoir O, Scharfmann R. Directing cell differentiation with small-molecule histone deacetylase inhibitors: the example of promoting pancreatic endocrine cells. Cell Cycle. 2009;8:536–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Lenoir O, Flosseau K, Ma FX, Blondeau B, Mai A, Bassel-Duby R, et al. Specific control of pancreatic endocrine beta- and delta-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes. 2011;60:2861–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Nerup J, Pociot F, European Consortium for I.S. A genomewide scan for type 1-diabetes susceptibility in Scandinavian families: identification of new loci with evidence of interactions. Am J Hum Gen. 2001;69:1301–13.CrossRefGoogle Scholar
  31. 31.
    Xiang K, Wang Y, Zheng T, Jia W, Li J, Chen L, et al. Genome-wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese: significant linkage to chromosome 6q21-q23 and chromosome 1q21-q24. Diabetes. 2004;53:228–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Larsen L, Tonnesen M, Ronn SG, Storling J, Jorgensen S, Mascagni P, et al. Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia. 2007;50:779–89.PubMedCrossRefGoogle Scholar
  33. 33.
    Lundh M, Christensen DP, Rasmussen DN, Mascagni P, Dinarello CA, Billestrup N, et al. Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines. Diabetologia. 2010;53:2569–78.PubMedCrossRefGoogle Scholar
  34. 34.
    Susick L, Senanayake T, Veluthakal R, Woste PM, Kowluru A. A novel histone deacetylase inhibitor prevents IL-1beta induced metabolic dysfunction in pancreatic beta-cells. J Cell Mol Med. 2009;13:1877–85.PubMedCrossRefGoogle Scholar
  35. 35.
    Susick L, Veluthakal R, Suresh MV, Hadden T, Kowluru A. Regulatory roles for histone deacetylation in IL-1beta-induced nitric oxide release in pancreatic beta-cells. J Cell Mol Med. 2008;12:1571–83.PubMedCrossRefGoogle Scholar
  36. 36.
    • Lewis EC, Blaabjerg L, Storling J, et al. The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet beta cells in vivo and in vitro. Mol Med. 2011;17:369–77. This article demonstrates that at clinically relevant doses, the orally active HDAC inhibitor ITF2357 favors survival of β cells exposed to inflammatory challenges. This suggests that oral ITF2357 would be an effective candidate for reducing inflammation in the islets in type 1 diabetes. PubMedCrossRefGoogle Scholar
  37. 37.
    Chou DH, Holson EB, Wagner FF, Tang AJ, Maglathlin RL, Lewis TA, et al. Inhibition of histone deacetylase 3 protects beta cells from cytokine-induced apoptosis. Chem Biol. 2012;19:669–73.PubMedCrossRefGoogle Scholar
  38. 38.
    • Kubicek S, Gilbert JC, Fomina-Yadlin D, et al. Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells. Proc Natl Acad Sci USA. 2012;109:5364–9. This article provides a measure of the genome-wide transcriptional effects of 29 compounds in pancreatic α- and β-cell lines. It shows that inhibiting chromatin-modifying enzymes with small molecules can activate very specific pathways, reinforcing the importance of novel small molecules development. PubMedCrossRefGoogle Scholar
  39. 39.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedCrossRefGoogle Scholar
  40. 40.
    Poy MN, Spranger M, Stoffel M. MicroRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab. 2007;9 Suppl 2:67–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes. 2007;56:2938–45.PubMedCrossRefGoogle Scholar
  42. 42.
    Kalis M, Bolmeson C, Esguerra JL, Gupta S, Edlund A, et al. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PloS One. 2011;6:e29166.PubMedCrossRefGoogle Scholar
  43. 43.
    Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA. 2009;106:5813–8.Google Scholar
  44. 44.
    Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD. The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PloS One. 2009;4:e5033.PubMedCrossRefGoogle Scholar
  46. 46.
    Simion A, Laudadio I, Prevot PP, Raynaud P, Lemaigre FP, Jacquemin P. MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2. Biochem Biophys Res Commun. 2010;391:293–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Roggli E, Gattesco S, Caille D, Briet C, Boitard C, Meda P, et al. Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes. 2012;61:1742–51.PubMedCrossRefGoogle Scholar
  48. 48.
    •• Moran I, Akerman I, van de Bunt M, et al. Human beta cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 2012;16:435–48. This study integrated sequence-based transcriptome and chromatin maps of human islets and β cells to define a new class of islet genes: lncRNA that may impact diabetes pathophysiology. PubMedCrossRefGoogle Scholar
  49. 49.
    Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene. 2009;28:1714–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genet. 2006;38:228–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Zaret KS, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science. 2008;322:1490–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotech. 2008;26:443–52.CrossRefGoogle Scholar
  53. 53.
    Zhou Q, Melton DA. Extreme makeover: converting one cell into another. Cell Stem Cell. 2008;3:382–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.CNRS UMR 7622, Université Pierre et Marie Curie, INSERM U969ParisFrance

Personalised recommendations