Skip to main content

Advertisement

Log in

Is the Risk and Nature of CVD the Same in Type 1 and Type 2 Diabetes?

  • Macrovascular Complications in Diabetes (PD Reaven, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The incidence of both type 1 and type 2 diabetes is increasing globally, most likely explained by environmental changes, such as changing exposures to foods, viruses, and toxins, and by increasing obesity. While cardiovascular disease (CVD) mortality has been declining recently, this global epidemic of diabetes threatens to stall this trend. CVD is the leading cause of death in both type 1 and type 2 diabetes, with at least a two- to fourfold increased risk in patients with diabetes. In this review, the risk factors for CVD are discussed in the context of type 1 and type 2 diabetes. While traditional risk factors such as dyslipidemia, hypertension, and obesity are greater in type 2 patients than in type 1 diabetes, they explain only about half of the increased CVD risk. The role for diabetes-specific risk factors, including hyperglycemia and kidney complications, is discussed in the context of new study findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bruno G, Novelli G, Panero F, Perotto M, Monasterolo F, Bona G, et al. The incidence of type 1 diabetes is increasing in both children and young adults in Northern Italy: 1984–2004 temporal trends. Diabetologia. 2009;52(12):2531–5.

    Article  PubMed  CAS  Google Scholar 

  2. Dabelea D, Bell RA, D'Agostino RBJ, Imperatore G, Johansen JM, Linder B, et al. Incidence of diabetes in youth in the United States. JAMA. 2007;297(24):2716–24.

    Article  PubMed  Google Scholar 

  3. • Derraik JG, Reed PW, Jefferies C, Cutfield SW, Hofman PL, Cutfield WS. Increasing incidence and age at diagnosis among children with type 1 diabetes mellitus over a 20-year period in Auckland (New Zealand). PLoS One. 2012;7(2):e32640. This important article not only highlights the rising incidence of type 1 diabetes in Auckland, as has been reported globally, but also demonstrates that the increase is occurring to a greater extent amoung older age groups (10–14 years of age). Studies such as this may help to pinpoint the factors that are leading to the ever-increasing incidence of type 1 diabetes.

    Article  PubMed  CAS  Google Scholar 

  4. Evertsen J, Alemzadeh R, Wang X. Increasing incidence of pediatric type 1 diabetes mellitus in Southeastern Wisconsin: relationship with body weight at diagnosis. PLoS One. 2009;4(9):e6873.

    Article  PubMed  Google Scholar 

  5. Lammi N, Blomstedt PA, Moltchanova E, Eriksson JG, Tuomilehto J, Karvonen M. Marked temporal increase in the incidence of type 1 and type 2 diabetes among young adults in Finland. Diabetologia. 2008;51(5):897–9.

    Article  PubMed  CAS  Google Scholar 

  6. Lam DW, LeRoith D. The worldwide diabetes epidemic. Curr Opin Endocrinol Diabetes Obes. 2012;19(2):93–6.

    PubMed  Google Scholar 

  7. Pozzilli P, Guglielmi C, Caprio S, Buzzetti R. Obesity, autoimmunity, and double diabetes in youth. Diabetes Care. 2011;34 Suppl 2:S166–70.

    Article  PubMed  Google Scholar 

  8. Abi Khalil C, Roussel R, Mohammedi K, Danchin N, Marre M. Cause-specific mortality in diabetes: recent changes in trend mortality. Eur J Prev Cardiol. 2012;19(3):374–81.

    Article  PubMed  Google Scholar 

  9. Astrup AS. Cardiovascular morbidity and mortality in diabetes mellitus: prediction and prognosis. Dan Med Bull. 2011;58(8):B4152.

    PubMed  Google Scholar 

  10. Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, Colhoun HM. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: a cohort study using the general practice research database. Diabetes Care. 2006;29(4):798–804.

    Article  PubMed  Google Scholar 

  11. Laing SP, Swerdlow AJ, Slater SD, Burden AC, Morris A, Waugh NR, et al. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia. 2003;46(6):760–5.

    Article  PubMed  CAS  Google Scholar 

  12. Xu J, Zou MH. Molecular insights and therapeutic targets for diabetic endothelial dysfunction. Circulation. 2009;120(13):1266–86.

    Article  PubMed  Google Scholar 

  13. Dabelea D, Kinney G, Snell-Bergeon JK, Hokanson JE, Eckel RH, Ehrlich J, et al. Effect of type 1 diabetes on the gender difference in coronary artery calcification: a role for insulin resistance? The Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study. Diabetes. 2003;52(11):2833–9.

    Article  PubMed  CAS  Google Scholar 

  14. Colhoun HM, Rubens MB, Underwood SR, Fuller JH. The effect of type 1 diabetes mellitus on the gender difference in coronary artery calcification. J Am Coll Cardiol. 2000;36(7):2160–7.

    Article  PubMed  CAS  Google Scholar 

  15. Silbernagel G, Rosinger S, Grammer TB, Kleber ME, Winkelmann BR, Boehm BO, et al. Duration of type 2 diabetes strongly predicts all-cause and cardiovascular mortality in people referred for coronary angiography. Atherosclerosis. 2012;221(2):551–7.

    Article  PubMed  CAS  Google Scholar 

  16. Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Sattar N. Impact of diabetes on cardiovascular disease risk and all-cause mortality in older men: influence of age at onset, diabetes duration, and established and novel risk factors. Arch Intern Med. 2011;171(5):404–10.

    Article  PubMed  CAS  Google Scholar 

  17. Hong YJ, Jeong MH, Choi YH, Song JA, Kim DH, Lee KH, et al. Impact of diabetes mellitus on plaque vulnerability and clinical outcome in patients with acute myocardial infarction with plaque rupture. Int J Cardiol. 2012;154(2):197–8.

    Article  PubMed  Google Scholar 

  18. MacDonald MR, Petrie MC, Home PD, Komajda M, Jones NP, Beck-Nielsen H, et al. Incidence and prevalence of unrecognized myocardial infarction in people with diabetes: a substudy of the Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycemia in Diabetes (RECORD) study. Diabetes Care. 2011;34(6):1394–6.

    Article  PubMed  Google Scholar 

  19. Kahn MB, Cubbon RM, Mercer B, Wheatcroft AC, Gherardi G, Aziz A, et al. Association of diabetes with increased all-cause mortality following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction in the contemporary era. Diab Vasc Dis Res. 2012;9(1):3–9.

    Article  PubMed  Google Scholar 

  20. Schwartz L, Bertolet M, Feit F, Fuentes F, Sako EY, Toosi MS, et al. Impact of completeness of revascularization on long-term cardiovascular outcomes in patients with type 2 diabetes mellitus: results from the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D). Circ Cardiovasc Interv. 2012;5(2):166–73.

    Article  PubMed  Google Scholar 

  21. Dabelea D, Pihoker C, Talton JW, D'Agostino RBJ, Fujimoto W, Klingensmith GJ, et al. Etiological approach to characterization of diabetes type: the SEARCH for Diabetes in Youth Study. Diabetes Care. 2011;34(7):1628–33.

    Article  PubMed  Google Scholar 

  22. Haines L, Wan KC, Lynn R, Barrett TG, Shield JP. Rising incidence of type 2 diabetes in children in the U.K. Diabetes Care. 2007;30(5):1097–101.

    Article  PubMed  Google Scholar 

  23. Kousa A, Puustinen N, Karvonen M, Moltchanova E. The regional association of rising type 2 diabetes incidence with magnesium in drinking water among young adults. Environ Res. 2012;112:126–8.

    Article  PubMed  CAS  Google Scholar 

  24. Jefferies C, Carter P, Reed PW, Cutfield W, Mouat F, Hofman PL, et al. The incidence, clinical features, and treatment of type 2 diabetes in children <15 yr in a population-based cohort from Auckland, New Zealand, 1995–2007. Pediatr Diabetes. 2012;13(4):294–300.

    Article  PubMed  Google Scholar 

  25. Gillespie KM, Bain SC, Barnett AH, Bingley PJ, Christie MR, Gill GV, et al. The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Lancet. 2004;364(9446):1699–700.

    Article  PubMed  Google Scholar 

  26. Gyurus EK, Patterson C, Soltesz G. Twenty-one years of prospective incidence of childhood type 1 diabetes in Hungary—the rising trend continues (or peaks and highlands?). Pediatr Diabetes. 2012;13(1):21–5.

    Article  PubMed  Google Scholar 

  27. Wadwa RP, Kinney GL, Maahs DM, Snell-Bergeon J, Hokanson JE, Garg SK, et al. Awareness and treatment of dyslipidemia in young adults with type 1 diabetes. Diabetes Care. 2005;28(5):1051–6.

    Article  PubMed  Google Scholar 

  28. Koivisto VA, Stevens LK, Mattock M, Ebeling P, Muggeo M, Stephenson J, et al. Cardiovascular disease and its risk factors in IDDM in Europe. EURODIAB IDDM Complications Study Group. Diabetes Care. 1996;19(7):689–97.

    Article  PubMed  CAS  Google Scholar 

  29. Orchard TJ, Forrest KY, Kuller LH, Becker DJ. Lipid and blood pressure treatment goals for type 1 diabetes: 10-year incidence data from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care. 2001;24(6):1053–9.

    Article  PubMed  CAS  Google Scholar 

  30. Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ. 1998;316(7134):823–8.

    Article  PubMed  CAS  Google Scholar 

  31. Bosevski M, Borozanov V, Vavlukis M, Pemovska G. Georgievska-Ismail Lj. Carotid ultrasound, blood lipids and waist determination can predict a future coronary revascularisation in the type 2 diabetic cohort. Prilozi. 2007;28(2):127–36.

    PubMed  CAS  Google Scholar 

  32. Collado-Mesa F, Colhoun HM, Stevens LK, Boavida J, Ferriss JB, Karamanos B, et al. Prevalence and management of hypertension in type 1 diabetes mellitus in Europe: the EURODIAB IDDM Complications Study. Diabet Med J Br Diabet Assoc. 1999;16(1):41–8.

    Article  CAS  Google Scholar 

  33. Soedamah-Muthu SS, Chaturvedi N, Witte DR, Stevens LK, Porta M, Fuller JH. Relationship between risk factors and mortality in type 1 diabetic patients in Europe: the EURODIAB Prospective Complications Study (PCS). Diabetes Care. 2008;31(7):1360–6.

    Article  PubMed  CAS  Google Scholar 

  34. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. UK Prospective Diabetes Study Group. Bmj. 1998;317(7160):713-20.

  35. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. Bmj. 1998;317 (7160):703-13.

  36. Maric C. Sex, diabetes and the kidney. Am J Physiol Renal Physiol. 2009;296(4):F680–8.

    Article  PubMed  CAS  Google Scholar 

  37. Lloyd CE, Kuller LH, Ellis D, Becker DJ, Wing RR, Orchard TJ. Coronary artery disease in IDDM. Gender differences in risk factors but not risk. Arterioscler Thromb Vasc Biol. 1996;16(6):720–6.

    Article  PubMed  CAS  Google Scholar 

  38. Madssen E, Vatten L, Nilsen TI, Midthjell K, Wiseth R, Dale AC. Abnormal glucose regulation and gender-specific risk of fatal coronary artery disease in the HUNT 1 study. Scand Cardiovasc J. 2012;46(4):219–25.

    Article  PubMed  CAS  Google Scholar 

  39. Tandon S, Wackers FJ, Inzucchi SE, Bansal S, Staib LH, Chyun DA, et al. Gender-based divergence of cardiovascular outcomes in asymptomatic patients with type 2 diabetes: results from the DIAD study. Diab Vasc Dis Res. 2012;9(2):124–30.

    Article  PubMed  Google Scholar 

  40. Nakhjavani M, Morteza A, Jenab Y, Ghaneei A, Esteghamati A, Karimi M, et al. Gender difference in albuminuria and ischemic heart disease in type 2 diabetes. Clin Med Res. 2012;10(2):51–6.

    Article  PubMed  CAS  Google Scholar 

  41. Rodrigues TC, Veyna AM, Haarhues MD, Kinney GL, Rewers M, Snell-Bergeon JK. Obesity and coronary artery calcium in diabetes: the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study. Diabetes Technol Ther. 2011;13(10):991–6.

    Article  PubMed  CAS  Google Scholar 

  42. Conway B, Miller RG, Costacou T, Fried L, Kelsey S, Evans RW, et al. Double-edged relationship between adiposity and coronary artery calcification in type 1 diabetes. Diab Vasc Dis Res. 2007;4(4):332–9.

    Article  PubMed  Google Scholar 

  43. Smith JD, Borel AL, Nazare JA, Haffner SM, Balkau B, Ross R, et al. Visceral adipose tissue indicates the severity of cardiometabolic risk in patients with and without type 2 diabetes: results from the INSPIRE ME IAA study. J Clin Endocrinol Metab. 2012;97(5):1517–25.

    Article  PubMed  CAS  Google Scholar 

  44. Logue J, Walker JJ, Leese G, Lindsay R, McKnight J, Morris A et al. The Association Between BMI Measured Within a Year After Diagnosis of Type 2 Diabetes and Mortality. Diabetes care. 2012.

  45. Bjarnegard N, Arnqvist HJ, Lindstrom T, Jonasson L, Jonsson A, Lanne T. Long-term hyperglycaemia impairs vascular smooth muscle cell function in women with type 1 diabetes mellitus. Diab Vasc Dis Res. 2009;6(1):25–31.

    Article  PubMed  Google Scholar 

  46. •• Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53. This article reports on CVD outcomes from the landmark Diabetes Control and Complications Trial and the follow-up Epidemiology of Diabetes Interventions and Complications Study and provides definitve proof that lowering hemoglobin A1c decreases CVD in type 1 diabetes.

    Article  PubMed  Google Scholar 

  47. Cleary PA, Orchard TJ, Genuth S, Wong ND, Detrano R, Backlund JY, et al. The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study. Diabetes. 2006;55(12):3556–65.

    Article  PubMed  CAS  Google Scholar 

  48. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837-53.

  49. Jarnert C, Kalani M, Ryden L, Bohm F. Strict glycaemic control improves skin microcirculation in patients with type 2 diabetes: a report from the Diabetes mellitus and Diastolic Dysfunction (DADD) study. Diab Vasc Dis Res. 2012;9(4):287–95.

    Article  PubMed  Google Scholar 

  50. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.

    Article  PubMed  CAS  Google Scholar 

  51. •• Action to Control Cardiovascular Risk in Diabetes Study G, Gerstein HC, Miller ME, Byington RP, Goff DC, Jr., Bigger JT et al. Effects of intensive glucose lowering in type 2 diabetes. The New England journal of medicine. 2008;358(24):2545-59. doi:10.1056/NEJMoa0802743. The ACCORD trial was designed to test whether reducing blood glucose levels to near normal would decrease CVD and mortality in people with type 2 diabetes, but this trial instead found an increased risk for mortality in the intensive treatment group.

  52. Group AC, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72. doi:10.1056/NEJMoa0802987.

    Article  Google Scholar 

  53. Orchard TJ, Olson JC, Erbey JR, Williams K, Forrest KY, Smithline Kinder L, et al. Insulin resistance-related factors, but not glycemia, predict coronary artery disease in type 1 diabetes: 10-year follow-up data from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care. 2003;26(5):1374–9.

    Article  PubMed  Google Scholar 

  54. Groop PH, Thomas MC, Moran JL, Waden J, Thorn LM, Makinen VP, et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009;58(7):1651–8.

    Article  PubMed  CAS  Google Scholar 

  55. Orchard TJ, Secrest AM, Miller RG, Costacou T. In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 2010;53(11):2312–9.

    Article  PubMed  CAS  Google Scholar 

  56. Lin CC, Chen CC, Kung PT, Li CI, Yang SY, Liu CS, et al. Joint relationship between renal function and proteinuria on mortality of patients with type 2 diabetes: the Taichung Diabetes Study. Cardiovasc Diabetol. 2012;11(1):131.

    Article  PubMed  CAS  Google Scholar 

  57. Kinney GL, Snell-Bergeon JK, Maahs DM, Eckel RH, Ehrlich J, Rewers M, et al. Lipoprotein-associated phospholipase A(2) activity predicts progression of subclinical coronary atherosclerosis. Diabetes Technol Ther. 2011;13(3):381–7.

    Article  PubMed  CAS  Google Scholar 

  58. Nelson TL, Biggs ML, Kizer JR, Cushman M, Hokanson JE, Furberg CD, et al. Lipoprotein-associated phospholipase A2 (Lp-PLA2) and future risk of type 2 diabetes: results from the Cardiovascular Health Study. J Clin Endocrinol Metab. 2012;97(5):1695–701.

    Article  PubMed  CAS  Google Scholar 

  59. Saremi A, Moritz TE, Anderson RJ, Abraira C, Duckworth WC, Reaven PD. Rates and determinants of coronary and abdominal aortic artery calcium progression in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care. 2010;33(12):2642–7.

    Article  PubMed  CAS  Google Scholar 

  60. Codner E. Estrogen and type 1 diabetes mellitus. Pediatr Endocrinol Rev. 2008;6(2):228–34.

    PubMed  Google Scholar 

  61. Gaete X, Vivanco M, Eyzaguirre FC, Lopez P, Rhumie HK, Unanue N, et al. Menstrual cycle irregularities and their relationship with HbA1c and insulin dose in adolescents with type 1 diabetes mellitus. Fertil Steril. 2010;94(5):1822–6.

    Article  PubMed  CAS  Google Scholar 

  62. Maric C, Forsblom C, Thorn L, Waden J, Groop PH. Association between testosterone, estradiol and sex hormone binding globulin levels in men with type 1 diabetes with nephropathy. Steroids. 2010;75(11):772–8.

    Article  PubMed  CAS  Google Scholar 

  63. Samara-Boustani D, Colmenares A, Elie C, Dabbas M, Beltrand J, Caron V, et al. High prevalence of hirsutism and menstrual disorders in obese adolescent girls and adolescent girls with type 1 diabetes mellitus despite different hormonal profiles. Eur J Endocrinol. 2012;166(2):307–16.

    Article  PubMed  CAS  Google Scholar 

  64. Schweiger BM, Snell-Bergeon JK, Roman R, McFann K, Klingensmith GJ. Menarche delay and menstrual irregularities persist in adolescents with type 1 diabetes. Reprod Biol Endocrinol. 2011;9:61.

    Article  PubMed  Google Scholar 

  65. Snell-Bergeon JK, Dabelea D, Ogden LG, Hokanson JE, Kinney GL, Ehrlich J, et al. Reproductive history and hormonal birth control use are associated with coronary calcium progression in women with type 1 diabetes mellitus. J Clin Endocrinol Metab. 2008;93(6):2142–8.

    Article  PubMed  CAS  Google Scholar 

  66. Strotmeyer ES, Steenkiste AR, Foley TPJ, Berga SL, Dorman JS. Menstrual cycle differences between women with type 1 diabetes and women without diabetes. Diabetes Care. 2003;26(4):1016–21.

    Article  PubMed  Google Scholar 

  67. Roldan B, Escobar-Morreale HF, Barrio R, de La Calle H, Alonso M, Garcia-Robles R, et al. Identification of the source of androgen excess in hyperandrogenic type 1 diabetic patients. Diabetes Care. 2001;24(7):1297–9.

    Article  PubMed  CAS  Google Scholar 

  68. Grossmann M, Thomas MC, Panagiotopoulos S, Sharpe K, Macisaac RJ, Clarke S, et al. Low testosterone levels are common and associated with insulin resistance in men with diabetes. J Clin Endocrinol Metab. 2008;93(5):1834–40.

    Article  PubMed  CAS  Google Scholar 

  69. Tomar R, Dhindsa S, Chaudhuri A, Mohanty P, Garg R, Dandona P. Contrasting testosterone concentrations in type 1 and type 2 diabetes. Diabetes Care. 2006;29(5):1120–2.

    Article  PubMed  CAS  Google Scholar 

  70. Anderson SG, Heald A, Younger N, Bujawansa S, Narayanan RP, McCulloch A, et al. Screening for hypogonadism in diabetes 2008/9: results from the Cheshire Primary Care cohort. Prim Care Diabetes. 2012;6(2):143–8.

    Article  PubMed  Google Scholar 

  71. Melander O, Maisel AS, Almgren P, Manjer J, Belting M, Hedblad B, et al. Plasma proneurotensin and incidence of diabetes, cardiovascular disease, breast cancer, and mortality. JAMA. 2012;308(14):1469–75.

    Article  PubMed  CAS  Google Scholar 

  72. Matsumoto K, Sera Y, Abe Y, Ueki Y, Tominaga T, Miyake S. Inflammation and insulin resistance are independently related to all-cause of death and cardiovascular events in Japanese patients with type 2 diabetes mellitus. Atherosclerosis. 2003;169(2):317–21.

    Article  PubMed  CAS  Google Scholar 

  73. Wadwa RP, Kinney GL, Ogden L, Snell-Bergeon JK, Maahs DM, Cornell E, et al. Soluble interleukin-2 receptor as a marker for progression of coronary artery calcification in type 1 diabetes. Int J Biochem Cell Biol. 2006;38(5–6):996–1003.

    Article  PubMed  CAS  Google Scholar 

  74. Rodrigues TC, Snell-Bergeon JK, Maahs DM, Kinney GL, Rewers M. Higher fibrinogen levels predict progression of coronary artery calcification in adults with type 1 diabetes. Atherosclerosis. 2010;210(2):671–3. doi:10.1016/j.atherosclerosis.2009.12.034.

    Article  PubMed  CAS  Google Scholar 

  75. Snell-Bergeon JK, West NA, Mayer-Davis EJ, Liese AD, Marcovina SM, D'Agostino RBJ, et al. Inflammatory markers are increased in youth with type 1 diabetes: the SEARCH Case-Control study. J Clin Endocrinol Metab. 2010;95(6):2868–76.

    Article  PubMed  CAS  Google Scholar 

  76. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327–34.

    Article  PubMed  CAS  Google Scholar 

  77. Sander D, Schulze-Horn C, Bickel H, Gnahn H, Bartels E, Conrad B. Combined effects of hemoglobin A1c and C-reactive protein on the progression of subclinical carotid atherosclerosis: the INVADE study. Stroke; J Cereb Circ. 2006;37(2):351–7. doi:10.1161/01.STR.0000199034.26345.bc.

    Article  CAS  Google Scholar 

  78. Schillinger M, Exner M, Amighi J, Mlekusch W, Sabeti S, Rumpold H, et al. Joint effects of C-reactive protein and glycated hemoglobin in predicting future cardiovascular events of patients with advanced atherosclerosis. Circulation. 2003;108(19):2323–8. doi:10.1161/01.CIR.0000095267.24234.00.

    Article  PubMed  CAS  Google Scholar 

  79. Schulze MB, Rimm EB, Li T, Rifai N, Stampfer MJ, Hu FB. C-reactive protein and incident cardiovascular events among men with diabetes. Diabetes Care. 2004;27(4):889–94.

    Article  PubMed  CAS  Google Scholar 

  80. Jager A, van Hinsbergh VW, Kostense PJ, Emeis JJ, Yudkin JS, Nijpels G, et al. von Willebrand factor, C-reactive protein, and 5-year mortality in diabetic and nondiabetic subjects: the Hoorn Study. Arterioscler Thromb Vasc Biol. 1999;19(12):3071–8.

    Article  PubMed  CAS  Google Scholar 

  81. Kengne AP, Batty GD, Hamer M, Stamatakis E, Czernichow S. Association of C-reactive protein with cardiovascular disease mortality according to diabetes status: pooled analyses of 25,979 participants from four U.K. prospective cohort studies. Diabetes Care. 2012;35(2):396–403.

    Article  PubMed  CAS  Google Scholar 

  82. Cox AJ, Agarwal S, Herrington DM, Carr JJ, Freedman BI, Bowden DW. C-reactive protein concentration predicts mortality in type 2 diabetes: the Diabetes Heart Study. Diabet Med: J British Diabet Assoc. 2012;29(6):767–70.

    Article  CAS  Google Scholar 

  83. Livingstone SJ, Looker HC, Hothersall EJ, Wild SH, Lindsay RS, Chalmers J, et al. Risk of cardiovascular disease and total mortality in adults with type 1 diabetes: Scottish registry linkage study. PLoS Med. 2012;9(10):e1001321.

    Article  PubMed  Google Scholar 

  84. Shah S, Singh K, Ali MK, Mohan V, Kadir MM, Unnikrishnan AG et al. Improving diabetes care: Multi-component cardiovascular disease risk reduction strategies for people with diabetes in South Asia-The CARRS Multi-center Translation Trial. Diabetes Res Clin Pract. 2012.

  85. Vyssoulis G, Pietri P, Vlachopoulos C, Alexopoulos N, Kyvelou SM, Terentes-Printzios D, et al. Early adverse effect of abnormal glucose metabolism on arterial stiffness in drug naive hypertensive patients. Diab Vasc Dis Res. 2012;9(1):18–24.

    Article  PubMed  Google Scholar 

  86. •• Wadwa RP, Urbina EM, Anderson AM, Hamman RF, Dolan LM, Rodriguez BL, et al. Measures of arterial stiffness in youth with type 1 and type 2 diabetes: the SEARCH for diabetes in youth study. Diabetes Care. 2010;33(4):881–6. Arterial stiffness is an early sign of CVD and is associated with events. The SEARCH study is one of the few studies to examine CVD risk concurretly in type 1 and type 2 diabetes. Among youth with diabetes, type 2 diabetes increased arterial stiffness more than did type 1 diabetes.

    Article  PubMed  Google Scholar 

  87. Erbel R, Mohlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010;56(17):1397–406.

    Article  PubMed  Google Scholar 

  88. Standards of medical care in diabetes. Diabetes Care. 2011;34(1):S11–61.

    Article  Google Scholar 

  89. Gao F, Zhou YJ, Shen H, Wang ZJ, Yang SW, Liu XL. Meta-analysis of percutaneous coronary intervention versus coronary artery bypass graft surgery in patients with diabetes and left main and/or multivessel coronary artery disease. Acta Diabetol. 2012.

  90. Brooks MM, Chung SC, Helmy T, Hillegass WB, Escobedo J, Melsop KA, et al. Health status after treatment for coronary artery disease and type 2 diabetes mellitus in the Bypass Angioplasty Revascularization Investigation 2 Diabetes trial. Circulation. 2010;122(17):1690–9.

    Article  PubMed  Google Scholar 

  91. • Lee C, Joseph L, Colosimo A, Dasgupta K. Mortality in diabetes compared with previous cardiovascular disease: A gender-specific meta-analysis. Diabetes Metab. 2012 June 7. Diabetes has been described as a coronary heart disease (CHD) equivalent, but this study examined whether people with type 2 diabetes and no history of CHD actually have the same risk for a CHD event as people with prior CHD. It was found that diabetes did not increase the risk for a CHD event as much as prior CHD, calling into question the dogma that diabetes is a CHD equivalent.

  92. Secrest AM, Prince CT, Costacou T, Miller RG, Orchard TJ. Predictors of and survival after incident stroke in type 1 diabetes. Diab Vasc Dis Res. 2012.

  93. Mulnier HE, Seaman HE, Raleigh VS, Soedamah-Muthu SS, Colhoun HM, Lawrenson RA. Mortality in people with type 2 diabetes in the UK. Diabet Med: J British Diabet Assoc. 2006;23(5):516–21.

    Article  CAS  Google Scholar 

  94. • Rana JS, Gransar H, Wong ND, Shaw L, Pencina M, Nasir K, et al. Comparative value of coronary artery calcium and multiple blood biomarkers for prognostication of cardiovascular events. Am J Cardiol. 2012;109(10):1449–53. In this prospective cohort study, CAC was examined as an independent predictor of CVD, and was found to improve net reclassification and area under the curve more than multiple biomarkers, suggesting this could be a powerful method for improving risk stratification.

    Article  PubMed  CAS  Google Scholar 

  95. Agarwal S, Morgan T, Herrington DM, Xu J, Cox AJ, Freedman BI, et al. Coronary calcium score and prediction of all-cause mortality in diabetes: the diabetes heart study. Diabetes care. 2011;34(5):1219–24.

    Article  PubMed  CAS  Google Scholar 

  96. •• Harjutsalo V, Forsblom C, Groop PH. Time trends in mortality in patients with type 1 diabetes: nationwide population based cohort study. Bmj. 2011;343:d5364. In this recent study, the trends in mortality among people with type 1 diabetes were examined in the Finnish registry of all people diagnozed between 1970 and 1999. Differences in survival trends were found between individuals with diagnosis of type 1 diabetes early in life, as compared with those diagnosed at older ages.

    Article  PubMed  Google Scholar 

  97. Preis SR, Hwang SJ, Coady S, Pencina MJ, D’Agostino RBS, Savage PJ, et al. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation. 2009;119(13):1728–35.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

Lindsey Duca declares that she has no conflict of interest.

Rachel Sippl declares that she has no conflict of interest.

Janet K. Snell-Bergeon declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet K. Snell-Bergeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duca, L., Sippl, R. & Snell-Bergeon, J.K. Is the Risk and Nature of CVD the Same in Type 1 and Type 2 Diabetes?. Curr Diab Rep 13, 350–361 (2013). https://doi.org/10.1007/s11892-013-0380-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-013-0380-1

Keywords

Navigation