Skip to main content

Advertisement

Log in

Diabetes Mellitus and Inflammation

  • Diabetes and Other Diseases—Emerging Associations (D Aron, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is increasingly common worldwide. Related complications account for increased morbidity and mortality, and enormous healthcare spending. Knowledge of the pathophysiological derangements involved in the occurrence of diabetes and related complications is critical for successful prevention and control solutions. Epidemiologic studies have established an association between inflammatory biomarkers and the occurrence of T2DM and complications. Adipose tissue appears to be a major site of production of those inflammatory biomarkers, as a result of the cross-talk between adipose cells, macrophages, and other immune cells that infiltrate the expanding adipose tissue. The triggering mechanisms of the inflammation in T2DM are still ill-understood. Inflammatory response likely contributes to T2DM occurrence by causing insulin resistance, and is in turn intensified in the presence of hyperglycemia to promote long-term complications of diabetes. Targeting inflammatory pathways could possibly be a component of the strategies to prevent and control diabetes and related complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. International Diabetes Federation. In: Unwin N, Whiting D, Guariguata L, Ghyoot G, Gan D, editors. Updated Diabetes Atlas 2011. 5th ed. Brussels; 2011.

  2. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–801.

    Article  PubMed  CAS  Google Scholar 

  3. Bending D, Zaccone P, Cooke A. Inflammation and type one diabetes. Int Immunol. 2012;24:339–46.

    Article  PubMed  CAS  Google Scholar 

  4. Ebstein W. Invited comment on W. Ebstein: on the therapy of diabetes mellitus, in particular on the application of sodium salicylate. J Mol Med. 2002;80:618. discussion 19.

    Article  PubMed  Google Scholar 

  5. Williamson RT. On the treatment of glycosuria and diabetes mellitus with sodium salicylate. Br Med J. 1901;1:760–2.

    Article  PubMed  CAS  Google Scholar 

  6. Reid J, Macdougall AI, Andrew MM. On the efficacy of salicylates in treating diabetes mellitus. Br Med J. 1957;2:1071–4.

    Article  PubMed  CAS  Google Scholar 

  7. Shulman GI. Unraveling the cellular mechanism of insulin resistance in humans: new insights from magnetic resonance spectroscopy. Physiology. 2004;19:183–90.

    Article  PubMed  CAS  Google Scholar 

  8. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.

    Article  PubMed  CAS  Google Scholar 

  9. Marques-Vidal P, Schmid R, Bochud M, et al. Adipocytokines, hepatic and inflammatory biomarkers and incidence of type 2 diabetes. The CoLaus Study. PLoS One. 2012;7:e51768.

    Article  PubMed  CAS  Google Scholar 

  10. Goldfine AB, Fonseca V, Shoelson SE. Therapeutic approaches to target inflammation in type 2 diabetes. Clin Chem. 2011;57:162–7.

    Article  PubMed  CAS  Google Scholar 

  11. Kengne AP, Batty GD, Hamer M, et al. Association of C-reactive protein with cardiovascular disease mortality according to diabetes status: pooled analyses of 25,979 participants from 4 U.K. prospective cohort studies. Diabetes Care. 2012;35:396–403.

    Article  PubMed  CAS  Google Scholar 

  12. Kengne AP, Czernichow S, Stamatakis E, et al. Fibrinogen and future cardiovascular disease in people with diabetes: aetiological associations and risk prediction using individual participant data from 9 community-based prospective cohort studies. Diabetes Vasc Dis Res. 2012.

  13. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132:2169–80.

    Article  PubMed  CAS  Google Scholar 

  14. Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol. 2012;8:709–16.

    Article  PubMed  CAS  Google Scholar 

  15. Nikolajczyk BS, Jagannathan-Bogdan M, Shin H, Gyurko R. State of the union between metabolism and the immune system in type 2 diabetes. Genes Immun. 2011;12:239–50.

    Article  PubMed  CAS  Google Scholar 

  16. Donath MY, Schumann DM, Faulenbach M, et al. Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care. 2008;31 Suppl 2:S161–4.

    Article  PubMed  CAS  Google Scholar 

  17. Brooks-Worrell B, Palmer JP. Immunology in the Clinic Review Series; focus on metabolic diseases: development of islet autoimmune disease in type 2 diabetes patients: potential sequelae of chronic inflammation. Clin Exp Immunol. 2012;167:40–6.

    Article  PubMed  CAS  Google Scholar 

  18. Donath MY, Boni-Schnetzler M, Ellingsgaard H, Ehses JA. Islet inflammation impairs the pancreatic beta-cell in type 2 diabetes. Physiology. 2009;24:325–31.

    Article  PubMed  CAS  Google Scholar 

  19. Kiechl S, Wittmann J, Giaccari A, et al. Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med. 2013. doi:10.1038/nm.3084

  20. Cai D. Neuroinflammation in overnutrition-induced diseases. Vitam Horm. 2013;91:195–218.

    PubMed  Google Scholar 

  21. Varma V, Yao-Borengasser A, Rasouli N, et al. Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action. Am J Physiol Endocrinol Metab. 2009;296:E1300–10.

    Article  PubMed  CAS  Google Scholar 

  22. Strissel KJ, Stancheva Z, Miyoshi H, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56:2910–8.

    Article  PubMed  CAS  Google Scholar 

  23. Gealekman O, Guseva N, Hartigan C, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011;123:186–94.

    Article  PubMed  Google Scholar 

  24. Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 2013;93:1–21.

    Article  PubMed  CAS  Google Scholar 

  25. Ye J. Hypoxia in obesity—from bench to bedside. J Transl Med. 2012;10 Suppl 2:A20.

    Article  Google Scholar 

  26. Goossens GH, Bizzarri A, Venteclef N, et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation. 2011;124:67–76.

    Article  PubMed  CAS  Google Scholar 

  27. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106:171–6.

    Article  PubMed  CAS  Google Scholar 

  28. Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17:4–12.

    PubMed  CAS  Google Scholar 

  29. Blasco-Baque V, Serino M, Vergnes JN, et al. High-fat diet induces periodontitis in mice through lipopolysaccharides (LPS) receptor signaling: protective action of estrogens. PLoS One. 2012;7:e48220.

    Article  PubMed  CAS  Google Scholar 

  30. Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3:559–72.

    Article  PubMed  CAS  Google Scholar 

  31. Ebbesson SO, Tejero ME, Lopez-Alvarenga JC, et al. Individual saturated fatty acids are associated with different components of insulin resistance and glucose metabolism: the GOCADAN study. Int J Circumpolar Health. 2010;69:344–51.

    PubMed  Google Scholar 

  32. Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142:687–98.

    Article  PubMed  CAS  Google Scholar 

  33. Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol. 2011;7:738–48.

    Article  PubMed  CAS  Google Scholar 

  34. Gurav AN. Periodontitis and insulin resistance: casual or causal relationship? Diabetes Metab J. 2012;36:404–11.

    Article  PubMed  Google Scholar 

  35. Pradhan S, Goel K. Interrelationship between diabetes and periodontitis: a review. J Nepal Med Assoc. 2011;51:144–53.

    CAS  Google Scholar 

  36. Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.

    Article  PubMed  CAS  Google Scholar 

  37. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–73.

    Article  PubMed  CAS  Google Scholar 

  38. • Burcelin R, Garidou L, Pomie C. Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin Immunol. 2012;24:67–74. The evidence linking gut microbiota with diabetes occurence are summarized and discussed, including the role of inflammation.

    Article  PubMed  CAS  Google Scholar 

  39. Rajagopalan S, Brook RD. Air pollution and type 2 diabetes: mechanistic insights. Diabetes. 2012;61:3037–45.

    Article  PubMed  CAS  Google Scholar 

  40. Andersen ZJ, Raaschou-Nielsen O, Ketzel M, et al. Diabetes incidence and long-term exposure to air pollution: a cohort study. Diabetes Care. 2012;35:92–8.

    Article  PubMed  CAS  Google Scholar 

  41. Liu C, Ying Z, Harkema J, et al. Epidemiological and experimental links between air pollution and type 2 diabetes. Toxicol Pathol. 2012. doi:10.1177/0192623312464531

  42. Khan H, Kunutsor S, Franco OH, Chowdhury R. Vitamin D, type 2 diabetes and other metabolic outcomes: a systematic review and meta-analysis of prospective studies. Proc Nutr Soc. 2013;72:89–97.

    Google Scholar 

  43. Mitri J, Muraru MD, Pittas AG. Vitamin D and type 2 diabetes: a systematic review. Eur J Clin Nutr. 2011;65:1005–15.

    Article  PubMed  CAS  Google Scholar 

  44. • Sung CC, Liao MT, Lu KC, Wu CC. Role of vitamin D in insulin resistance. J Biomed Biotechnol. 2012;2012:634195. This paper discussed the inflammatory mediators of insulin resistance caused by vitamin D deficiency.

    PubMed  Google Scholar 

  45. Chagas CE, Borges MC, Martini LA, Rogero MM. Focus on vitamin D, inflammation and type 2 diabetes. Nutrients. 2012;4:52–67.

    Article  PubMed  CAS  Google Scholar 

  46. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex-linking immunity and metabolism. Nat Rev Endocrinol. 2012;8:743–54.

    Article  PubMed  CAS  Google Scholar 

  47. Grimble RF. The true cost of in-patient obesity: impact of obesity on inflammatory stress and morbidity. Proc Nutr Soc. 2010;69:511–7.

    Article  PubMed  Google Scholar 

  48. Cruz NG, Sousa LP, Sousa MO, et al. The linkage between inflammation and Type 2 diabetes mellitus. Diabetes Res Clin Pract. 2012. doi:10.1016/j.diabres.2012.09.003

  49. Rafiq S, Melzer D, Weedon MN, et al. Gene variants influencing measures of inflammation or predisposing to autoimmune and inflammatory diseases are not associated with the risk of type 2 diabetes. Diabetologia. 2008;51:2205–13.

    Article  PubMed  CAS  Google Scholar 

  50. Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90.

    Article  PubMed  CAS  Google Scholar 

  51. Volkmar M, Dedeurwaerder S, Cunha DA, et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 2012;31:1405–26.

    Article  PubMed  CAS  Google Scholar 

  52. Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol. 2010;299:F14–25.

    Article  PubMed  CAS  Google Scholar 

  53. Gilbert ER, Liu D. Epigenetics: the missing link to understanding beta-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics. 2012;7:841–52.

    Article  PubMed  CAS  Google Scholar 

  54. •• Gkrania-Klotsas E, Ye Z, Cooper AJ, et al. Differential white blood cell count and type 2 diabetes: systematic review and meta-analysis of cross-sectional and prospective studies. PLoS One. 2010;5:e13405. This systematic review and meta-analysis based on a large number of studies and participants provides evidence supporting the association of total white cell counts and subfractions on type 2 diabetes risk.

    Article  PubMed  Google Scholar 

  55. Lehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl. 2012;6:91–101.

    Article  PubMed  CAS  Google Scholar 

  56. Otero M, Lago R, Lago F, et al. Leptin, from fat to inflammation: old questions and new insights. FEBS Lett. 2005;579:295–301.

    Article  PubMed  CAS  Google Scholar 

  57. Maya-Monteiro CM, Bozza PT. Leptin and mTOR: partners in metabolism and inflammation. Cell Cycle. 2008;7:1713–7.

    Article  PubMed  CAS  Google Scholar 

  58. La Cava A, Matarese G. The weight of leptin in immunity. Nat Rev Immunol. 2004;4:371–9.

    Article  PubMed  Google Scholar 

  59. Thorand B, Zierer A, Baumert J, et al. Associations between leptin and the leptin / adiponectin ratio and incident Type 2 diabetes in middle-aged men and women: results from the MONICA / KORA Augsburg study 1984–2002. Diabet Med. 2010;27:1004–11.

    Article  PubMed  CAS  Google Scholar 

  60. Welsh P, Murray HM, Buckley BM, et al. Leptin predicts diabetes but not cardiovascular disease: results from a large prospective study in an elderly population. Diabetes Care. 2009;32:308–10.

    Article  PubMed  Google Scholar 

  61. Bruun JM, Lihn AS, Verdich C, et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab. 2003;285:E527–33.

    PubMed  CAS  Google Scholar 

  62. Wolf AM, Wolf D, Rumpold H, et al. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun. 2004;323:630–5.

    Article  PubMed  CAS  Google Scholar 

  63. Sell H, Eckel J. Chemotactic cytokines, obesity and type 2 diabetes: in vivo and in vitro evidence for a possible causal correlation? Proc Nutr Soc. 2009;68:378–84.

    Article  PubMed  CAS  Google Scholar 

  64. Roman AA, Parlee SD, Sinal CJ. Chemerin: a potential endocrine link between obesity and type 2 diabetes. Endocrine. 2012;42:243–51.

    Article  PubMed  CAS  Google Scholar 

  65. Rourke JL, Dranse HJ, Sinal CJ. Towards an integrative approach to understanding the role of chemerin in human health and disease. Obes Rev. 2013;14:245–62.

    Google Scholar 

  66. Hotamisligil G, Shargill N, Spiegelman B. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.

    Article  PubMed  CAS  Google Scholar 

  67. Arner P. The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones. Trends Endocrinol Metab. 2003;14:137–45.

    Article  PubMed  CAS  Google Scholar 

  68. Fasshauer M, Paschke R. Regulation of adipocytokines and insulinresistance. Diabetologia. 2003;46:1594–603.

    Article  PubMed  CAS  Google Scholar 

  69. Kopp HP, Kopp CW, Festa A, et al. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Thromb Vasc Biol. 2003;23:1042–7.

    Article  PubMed  CAS  Google Scholar 

  70. Ruan H, Miles PD, Ladd CM, et al. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance. Diabetes. 2002;51:3176–88.

    Article  PubMed  CAS  Google Scholar 

  71. Hotamisligil GS. The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med. 1999;245:621–5.

    Article  PubMed  CAS  Google Scholar 

  72. Vozarova B, Weyer C, Hanson K, et al. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res. 2001;9:414–7.

    Article  PubMed  CAS  Google Scholar 

  73. Pradhan A, Manson J, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286:327–34.

    Article  PubMed  CAS  Google Scholar 

  74. Ye J, McGuinness OP. Inflammation during obesity is not all bad: Evidence from animal and human studies. Am J Physiol Endocrinol Metab. 2013;304:E466–77.

    Google Scholar 

  75. Luotola K, Pietila A, Zeller T, et al. Associations between interleukin-1 (IL-1) gene variations or IL-1 receptor antagonist levels and the development of type 2 diabetes. J Intern Med. 2011;269:322–32.

    Article  PubMed  CAS  Google Scholar 

  76. Sattar N, Wannamethee SG, Forouhi NG. Novel biochemical risk factors for type 2 diabetes: pathogenic insights or prediction possibilities? Diabetologia. 2008;51:926–40.

    Article  PubMed  CAS  Google Scholar 

  77. Xu JW, Morita I, Ikeda K, et al. C-reactive protein suppresses insulin signaling in endothelial cells: role of spleen tyrosine kinase. Mol Endocrinol. 2007;21:564–73.

    Article  PubMed  CAS  Google Scholar 

  78. Zeyda M, Stulnig TM. Obesity, inflammation, and insulin resistance–a mini-review. Gerontology. 2009;55:379–86.

    Article  PubMed  CAS  Google Scholar 

  79. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–35.

    Article  PubMed  CAS  Google Scholar 

  80. •• Tanti JF, Ceppo F, Jager J, Berthou F. Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front Endocrinol. 2012;3:181. This paper provides an extensive and recent overview on signaling pathways linking obesity to insulin resistance.

    Google Scholar 

  81. Haruta T, Uno T, Kawahara J, et al. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol. 2000;14:783–94.

    Article  PubMed  CAS  Google Scholar 

  82. Hiratani K, Haruta T, Tani A, et al. Roles of mTOR and JNK in serine phosphorylation, translocation, and degradation of IRS-1. Biochem Biophys Res Commun. 2005;335:836–42.

    Article  PubMed  CAS  Google Scholar 

  83. Lebrun P, Van Obberghen E. SOCS proteins causing trouble in insulin action. Acta Physiol. 2008;192:29–36.

    Article  CAS  Google Scholar 

  84. Hirabara SM, Gorjao R, Vinolo MA, et al. Molecular targets related to inflammation and insulin resistance and potential interventions. J Biomed Biotechnol. 2012;2012:379024.

    Article  PubMed  Google Scholar 

  85. Haffner S, Temprosa M, Crandall J, et al. Intensive lifestyle intervention or metformin on inflammation and coagulation in participants with impaired glucose tolerance. Diabetes. 2005;54:1566–72.

    Article  PubMed  Google Scholar 

  86. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    Article  PubMed  CAS  Google Scholar 

  87. Goldfine AB, Fonseca V, Jablonski KA, et al. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2010;152:346–57.

    Article  PubMed  Google Scholar 

  88. Rumore MM, Kim KS. Potential role of salicylates in type 2 diabetes. Ann Pharmacother. 2010;44:1207–21.

    Article  PubMed  CAS  Google Scholar 

  89. Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162:597–605.

    Article  PubMed  CAS  Google Scholar 

  90. Bernstein LE, Berry J, Kim S, et al. Effects of etanercept in patients with the metabolic syndrome. Arch Intern Med. 2006;166:902–8.

    Article  PubMed  CAS  Google Scholar 

  91. Dominguez H, Storgaard H, Rask-Madsen C, et al. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res. 2005;42:517–25.

    Article  PubMed  CAS  Google Scholar 

  92. Pittas AG, Chung M, Trikalinos T, et al. Systematic review: vitamin D and cardiometabolic outcomes. Ann Intern Med. 2010;152:307–14.

    Article  PubMed  Google Scholar 

  93. • George PS, Pearson ER, Witham MD. Effect of vitamin D supplementation on glycaemic control and insulin resistance: a systematic review and meta-analysis. Diabet Med. 2012;29:e142–50. This systematic review and meta-analysis showed that vitamin D supplementation had a small improvement effect on fasting glucose and insulin resistance among people with diabetes or impaired glucose tolerance, but no effect on glycated haemoglobin among those with diabetes.

    Article  PubMed  CAS  Google Scholar 

  94. Panwar H, Rashmi HM, Batish VK, Grover S. Probiotics as the potential biotherapeutics in the management of Type 2 Diabetes—prospects and perspectives. Diabetes Metab Res Rev. 2013;29:103–12.

    Google Scholar 

  95. Zhao Y, Jiang Z, Guo C. New hope for type 2 diabetics: targeting insulin resistance through the immune modulation of stem cells. Autoimmun Rev. 2011;11:137–42.

    Article  PubMed  CAS  Google Scholar 

  96. Kengne AP, Sobngwi E, Chalmers J. Multiple risk factor interventions and inflammatory biomarkers in high risk individuals with type 2 diabetes. Diabetes Res Clin Pract. 2012;95:386–8.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

Eric Lontchi-Yimagou declares that he has no conflict of interest.

Eugene Sobngwi declares that he has no conflict of interest.

Tandi E Matsha declares that she has no conflict of interest.

Andre Pascal Kengne declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Pascal Kengne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lontchi-Yimagou, E., Sobngwi, E., Matsha, T.E. et al. Diabetes Mellitus and Inflammation. Curr Diab Rep 13, 435–444 (2013). https://doi.org/10.1007/s11892-013-0375-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-013-0375-y

Keywords

Navigation