Meat Consumption, Diabetes, and Its Complications

Abstract

Several prospective studies have reported that risk of type 2 diabetes (T2DM) is elevated in meat consumers, especially when processed meats are consumed. Elevated risks of coronary heart disease (CHD) and stroke in meat consumers have also been reported. In this overview, the evidence regarding meat consumption and the risk of diabetes, both type 1 diabetes (T1DM) and T2DM and their macro- and microvascular complications, is reviewed. For T2DM, we performed a new meta-analysis including publications up to October 2012. For T1DM, only a few studies have reported increased risks for meat consumers or for high intake of saturated fatty acids and nitrates and nitrites. For T2DM, CHD, and stroke, the evidence is strongest. Per 100 g of total meat, the pooled relative risk (RR) for T2DM is 1.15 (95 % CI 1.07–1.24), for (unprocessed) red meat 1.13 (95 % CI 1.03–1.23), and for poultry 1.04 (95 % CI 0.99–1.33); per 50 g of processed meat, the pooled RR is 1.32 (95 % CI 1.19–1.48). Hence, the strongest association regarding T2DM is observed for processed (red) meat. A similar observation has been made for CHD. For stroke, however, a recent meta-analysis shows moderately elevated risks for meat consumers, for processed as well as for fresh meats. For the microvascular complications of diabetes, few prospective data were available, but suggestions for elevated risks can be derived from findings on hyperglycemia and hypertension. The results are discussed in the light of the typical nutrients and other compounds present in meat—that is, saturated and trans fatty acids, dietary cholesterol, protein and amino acids, heme-iron, sodium, nitrites and nitrosamines, and advanced glycation end products. In light of these findings, a diet moderate to low in red meat, unprocessed and lean, and prepared at moderate temperatures is probably the best choice from the public health point of view.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Feskens EJ. Nutritional factors and the etiology of non-insulin-dependent diabetes mellitus: an epidemiological overview. World Rev Nutr Diet. 1992;69:1–39.

    PubMed  CAS  Google Scholar 

  2. 2.

    Haffner SJ, Cassells H. Hyperglycemia as a cardiovascular risk factor. Am J Med. 2003;115(Suppl 8A):6S–11.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Mann JI, De Leeuw I, Hermansen K, Karamanos B, Karlstrom B, Katsilambros N, et al. Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus. Nutr Metab Cardiovasc Dis. 2004;14(6):373–94.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Dahlquist GG, Blom LG, Persson LA, Sandstrom AI, Wall SG. Dietary factors and the risk of developing insulin dependent diabetes in childhood. BMJ. 1990;300(6735):1302–6.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Muntoni S, Cocco P, Aru G, Cucca F. Nutritional factors and worldwide incidence of childhood type 1 diabetes. Am J Clin Nutr. 2000;71(6):1525–9.

    PubMed  CAS  Google Scholar 

  6. 6.

    Virtanen SM, Uusitalo L, Kenward MG, Nevalainen J, Uusitalo U, Kronberg-Kippila C, et al. Maternal food consumption during pregnancy and risk of advanced beta-cell autoimmunity in the offspring. Pediatr Diabetes. 2011;12(2):95–9.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Feskens EJ, Kromhout D. Habitual dietary intake and glucose tolerance in euglycaemic men: the Zutphen Study. Int J Epidemiol. 1990;19(4):953–9.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Himsworth HP. The dietetic factor determining the glucose tolerance and sensitivity to insulin of healthy men. Clin Sci. 1935;2:67–94.

    Google Scholar 

  9. 9.

    West KM, Kalbfleisch JM. Influence of nutritional factors on prevalence of diabetes. Diabetes. 1971;20(2):99–108.

    PubMed  CAS  Google Scholar 

  10. 10.

    Snowdon DA, Phillips RL. Does a vegetarian diet reduce the occurrence of diabetes? Am J Public Health. 1985;75(5):507–12.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Kawate R, Yamakido M, Nishimoto Y, Bennett PH, Hamman RF, Knowler WC. Diabetes mellitus and its vascular complications in Japanese migrants on the Island of Hawaii. Diabetes Care. 1979;2(2):161–70.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Feskens EJ, Loeber JG, Kromhout D. Diet and physical activity as determinants of hyperinsulinemia: the Zutphen Elderly Study. Am J Epidemiol. 1994;140(4):350–60.

    PubMed  CAS  Google Scholar 

  13. 13.

    Marshall JA, Hoag S, Shetterly S, Hamman RF. Dietary fat predicts conversion from impaired glucose tolerance to NIDDM: the San Luis Valley diabetes study. Diabetes Care. 1994;17(1):50–6.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Trevisan M, Krogh V, Freudenheim J, Blake A, Muti P, Panico S, et al. Consumption of olive oil, butter, and vegetable oils and coronary heart disease risk factors. JAMA. 1990;263(5):688–92.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Joyce A, Dixon S, Comfort J, Hallett J. Reducing the environmental impact of dietary choice: perspectives from a behavioural and social change approach. J Environ Publ Health. 2012;2012:978672.

    Google Scholar 

  16. 16.

    Todd JA. Etiology of type 1 diabetes. Immunity. 2010;32(4):457–67.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Muntoni S, Muntoni S. Epidemiological association between some dietary habits and the increasing incidence of type 1 diabetes worldwide. Ann Nutr Metab. 2006;50(1):11–9.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Muntoni S, Mereu R, Atzori L, Mereu A, Galassi S, Corda S, et al. High meat consumption is associated with type 1 diabetes mellitus in a Sardinian case–control study. Acta Diabetol. 2012. doi:10.1007/s00592-012-0385-2.

  19. 19.

    Oresic M, Simell S, Sysi-Aho M, Nanto-Salonen K, Seppanen-Laakso T, Parikka V, et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exper Med. 2008;205(13):2975–84.

    Article  CAS  Google Scholar 

  20. 20.

    Virtanen SM, Niinisto S, Nevalainen J, Salminen I, Takkinen HM, Kaaria S, et al. Serum fatty acids and risk of advanced beta-cell autoimmunity: a nested case–control study among children with HLA-conferred susceptibility to type I diabetes. Eur J Clin Nutr. 2010;64(8):792–9.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Lamb MM, Myers MA, Barriga K, Zimmet PZ, Rewers M, Norris JM. Maternal diet during pregnancy and islet autoimmunity in offspring. Pediatr Diabetes. 2008;9(2):135–41.

    PubMed  Article  Google Scholar 

  22. 22.

    • Knip M, Virtanen SM, Akerblom HK. Infant feeding and the risk of type 1 diabetes. Am J Clin Nutr. 2010;91(5):1506S–13. This is a good overview of the latest information on the role of infant feeding and the occurrence of type 1 diabetes. The authors are well-known for their efforts in this field, including double-blind randomized trial using a hydrolyzed baby formula used in weaning published in 2010 in the New England Journal of Medicine.

    PubMed  Article  Google Scholar 

  23. 23.

    Vaarala O. Is the origin of type 1 diabetes in the gut? Immunol Cell Biol. 2012;90(3):271–6.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Diamant M, Blaak EE, de Vos WM. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev. 2011;12(4):272–81.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    van Dam RM, Willett WC, Rimm EB, Stampfer MJ, Hu FB. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care. 2002;25(3):417–24.

    PubMed  Article  Google Scholar 

  27. 27.

    Meyer KA, Kushi LH, Jacobs Jr DR, Folsom AR. Dietary fat and incidence of type 2 diabetes in older Iowa women. Diabetes Care. 2001;24(9):1528–35.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Song Y, Manson JE, Buring JE, Liu S. A prospective study of red meat consumption and type 2 diabetes in middle-aged and elderly women: the women's health study. Diabetes Care. 2004;27(9):2108–15.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Montonen J, Jarvinen R, Heliovaara M, Reunanen A, Aromaa A, Knekt P. Food consumption and the incidence of type II diabetes mellitus. Eur J Clin Nutr. 2005;59(3):441–8.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Villegas R, Shu XO, Gao YT, Yang G, Cai H, Li H, et al. The association of meat intake and the risk of type 2 diabetes may be modified by body weight. Int J Med Sci. 2006;3(4):152–9.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Hodge AM, English DR, O'Dea K, Giles GG. Dietary patterns and diabetes incidence in the Melbourne Collaborative Cohort Study. Am J Epidemiol. 2007;165(6):603–10.

    PubMed  Article  Google Scholar 

  32. 32.

    Vang A, Singh PN, Lee JW, Haddad EH, Brinegar CH. Meats, processed meats, obesity, weight gain and occurrence of diabetes among adults: findings from Adventist Health Studies. Ann Nutr Metab. 2008;52(2):96–104.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Mannisto S, Kontto J, Kataja-Tuomola M, Albanes D, Virtamo J. High processed meat consumption is a risk factor of type 2 diabetes in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention study. Br J Nutr. 2010;103(12):1817–22.

    PubMed  Article  Google Scholar 

  34. 34.

    Steinbrecher, Erber E, Grandinetti A, Kolonel LN, Maskarinec G. Meat consumption and risk of type 2 diabetes: the Multiethnic Cohort. Publ Health Nutr. 2011;14(4):568–74.

  35. 35.

    Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Willett WC, et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011;94(4):1088–96.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Lajous M, Tondeur L, Fagherazzi G, de Lauzon-Guillain B, Boutron-Ruaualt MC, Clavel-Chapelon F. Processed and unprocessed red meat consumption and incident type 2 diabetes among French women. Diabetes Care. 2012;35(1):128–30.

    PubMed  Article  Google Scholar 

  37. 37.

    van Woudenbergh GJ, Kuijsten A, Tigcheler B, Sijbrands EJG, van Rooij FJA, Hofman A, et al. Meat consumption and its association with C-reactive protein and incident type 2 diabetes: the Rotterdam Study. Diabetes Care. 2012;35(7):1499–505.

    PubMed  Article  Google Scholar 

  38. 38.

    Fretts AM, Howard BV, McKnight B, Duncan GE, Beresford SA, Mete M, et al. Associations of processed meat and unprocessed red meat intake with incident diabetes: the Strong Heart Family Study. Am J Clin Nutr. 2012. doi:10.3945/ajcn.111.029942.

  39. 39.

    • The InterAct Consortium. Association between dietary meat consumption and incident type 2 diabetes: the EPIC-InterAct study. Diabetologia. 2012. doi:10.1007/s00125-012-2718-7. Well written paper on the results regarding meat and type 2 diabetes in the largest diabetes cohort to date, the European InterAct study, based on cohorts from eight countries of the well-known EPIC study (European Prospective Study on Cancer and Nutrition).

  40. 40.

    •• Aune D, Ursin G, Veierod MB. Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia. 2009;52(11):2277–87. Very good and extensive review including the first meta-analysis on meat and risk of type 2 diabetes.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Micha R, Wallace SK, Mozaffarian D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus. A systematic review and meta-analysis. Circulation. 2010;121(21):2271–83.

    PubMed  Article  Google Scholar 

  42. 42.

    Soedamah-Muthu SS, Chaturvedi N, Witte DR, Stevens LK, Porta M, Fuller JH, et al. Relationship between risk factors and mortality in type 1 diabetic patients in Europe: the EURODIAB Prospective Complications Study (PCS). Diabetes Care. 2008;31(7):1360–6.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Tesfaye S, Chaturvedi N, Eaton SE, Ward JD, Manes C, Ionescu-Tirgoviste C, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352(4):341–50.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Trichopoulou A, Psaltopoulou T, Orfanos P, Trichopoulos D. Diet and physical activity in relation to overall mortality amongst adult diabetics in a general population cohort. J Intern Med. 2006;259(6):583–91.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Bernstein AM, Sun Q, Hu FB, Stampfer MJ, Manson JE, Willett WC. Major dietary protein sources and risk of coronary heart disease in women. Circulation. 2010;122(9):876–83.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    • Kaluza J, Wolk A, Larsson SC. Red meat consumption and risk of stroke: a meta-analysis of prospective studies. Stroke. 2012;43(10):2556–60. Most recent meta-analysis on meat consumption and the risk of stroke.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77(5):1146–55.

    PubMed  CAS  Google Scholar 

  48. 48.

    Brouwer IA, Wanders AJ, Katan MB. Effect of animal and industrial trans fatty acids on HDL and LDL cholesterol levels in humans–a quantitative review. PLoS One. 2010;5(3):e9434.

    PubMed  Article  Google Scholar 

  49. 49.

    Aro A, Antoine JM, Pizzoferrato L, Reykdal O, Van Poppel G. Trans fatty acids in diary and meat products from 14 European countries: the Transfair Study. J Food Compos Anal. 1998;11:150–60.

    Article  CAS  Google Scholar 

  50. 50.

    Soinio M, Laakso M, Lehto S, Hakala P, Ronnemaa T. Dietary fat predicts coronary heart disease events in subjects with type 2 diabetes. Diabetes Care. 2003;26(3):619–24.

    PubMed  Article  Google Scholar 

  51. 51.

    Tanasescu M, Cho E, Manson JE, Hu FB. Dietary fat and cholesterol and the risk of cardiovascular disease among women with type 2 diabetes. Am J Clin Nutr. 2004;79(6):999–1005.

    PubMed  CAS  Google Scholar 

  52. 52.

    Djousse L, Gaziano JM. Dietary cholesterol and coronary artery disease: a systematic review. Curr Atheroscler Rep. 2009;11(6):418–22.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Weggemans RM, Zock PL, Katan MB. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans: a meta-analysis. Am J Clin Nutr. 2001;73(5):885–91.

    PubMed  CAS  Google Scholar 

  54. 54.

    van Bussel BC, Soedamah-Muthu SS, Henry RM, Schalkwijk CG, Ferreira I, Chaturvedi N, et al. Unhealthy dietary patterns associated with inflammation and endothelial dysfunction in type 1 diabetes: the EURODIAB study. Nutr Metab Cardiovasc Dis. 2012. doi:10.1016/j.numecd.2012.04.005.

  55. 55.

    Cavicchia PP, Steck SE, Hurley TG, Hussey JR, Ma Y, Ockene IS, et al. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J Nutr. 2009;139(12):2365–72.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Djousse L, Gaziano JM. Egg consumption in relation to cardiovascular disease and mortality: the Physicians' Health Study. Am J Clin Nutr. 2008;87(4):964–9.

    PubMed  CAS  Google Scholar 

  57. 57.

    Djousse L, Gaziano JM, Buring JE, Lee IM. Egg consumption and risk of type 2 diabetes in men and women. Diabetes Care. 2009;32(2):295–300.

    PubMed  Article  Google Scholar 

  58. 58.

    • Micha R, Michas G, Mozaffarian D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes - An Updated Review of the Evidence. Curr Atheroscler Rep. 2012. doi:10.1007/s11883-012-0282-8. Most recent review on meat and coronary heart disease based on their earlier Circulation publication.

  59. 59.

    Forstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med. 2008;5(6):338–49.

    PubMed  Article  Google Scholar 

  60. 60.

    Buijsse B, Feskens EJ, Moschandreas J, Jansen EH, Jacobs Jr DR, Kafatos A, et al. Oxidative stress, and iron and antioxidant status in elderly men: differences between the Mediterranean south (Crete) and northern Europe (Zutphen). Eur J Cardiovasc Prev Rehabil. 2007;14(4):495–500.

    PubMed  Article  Google Scholar 

  61. 61.

    Zhao Z, Li S, Liu G, Yan F, Ma X, Huang Z, et al. Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: a systematic review and meta-analysis. PLoS One. 2012;7(7):e41641.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Swaminathan S, Fonseca VA, Alam MG, Shah SV. The role of iron in diabetes and its complications. Diabetes Care. 2007;30(7):1926–33.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    • Sacks FM, Campos H. Dietary therapy in hypertension. N Engl J Med. 2010;362(22):2102–12. Solid and clear discussion showing the importance of diet in the prevention and treatment of hypertension.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009;52(5):752–64.

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Muris DM, Houben AJ, Schram MT, Stehouwer CD. Microvascular dysfunction is associated with a higher incidence of type 2 diabetes mellitus–Brief Report: a Systematic Review and Meta-Analysis. Arterioscl Thromb Vasc Biol. 2012;32(12):3082–94.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Virtanen SM, Jaakkola L, Rasanen L, Ylonen K, Aro A, Lounamaa R, et al. Nitrate and nitrite intake and the risk for type 1 diabetes in Finnish children. Childhood Diabetes in Finland Study Group. Diabet Med. 1994;11(7):656–62.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    • Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10. Good overview on the rationale for considering food sources of nitrate and nitrites as healthy, based on evidence regarding vascular and immune function.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med. 2006;355(26):2792–3.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    • Lundberg JO, Weitzberg E. Biology of nitrogen oxides in the gastrointestinal tract. Gut. 2012. doi:10.1136/gutjnl-2011-301649. Clear and well-written overview of all there is to know on reactive nitrogen oxides in the gastrointestinal tract.

  70. 70.

    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Lijinsky W. N-Nitroso compounds in the diet. Mutat Res. 1999;443(1–2):129–38.

    PubMed  CAS  Google Scholar 

  72. 72.

    Tong M, Neusner A, Longato L, Lawton M, Wands JR, de la Monte SM. Nitrosamine exposure causes insulin resistance diseases: relevance to type 2 diabetes mellitus, non-alcoholic steatohepatitis, and Alzheimer's disease. J Alzheimers Dis. 2009;17(4):827–44.

    PubMed  CAS  Google Scholar 

  73. 73.

    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    • Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–16 e12. This paper describes the database of dietary advanced glycation end products now available for 549 foods. It seems that dry heat promotes new dAGE formation by 10- to 100-fold above the uncooked state across food categories.

    PubMed  Article  Google Scholar 

  75. 75.

    Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci. 2002;99(24):15596–601.

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104(8):1287–91.

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Corpeleijn E, Feskens EJ, Jansen EH, Mensink M, Saris WH, de Bruin TW, et al. Improvements in glucose tolerance and insulin sensitivity after lifestyle intervention are related to changes in serum fatty acid profile and desaturase activities: the SLIM study. Diabetologia. 2006;49(10):2392–401.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Wageningen University.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edith J. M. Feskens.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feskens, E.J.M., Sluik, D. & van Woudenbergh, G.J. Meat Consumption, Diabetes, and Its Complications. Curr Diab Rep 13, 298–306 (2013). https://doi.org/10.1007/s11892-013-0365-0

Download citation

Keywords

  • Review
  • Meat
  • Red meat
  • Processed meat
  • Diabetes
  • Cardiovascular disease
  • Diabetes complications
  • Meta-analysis