Current Diabetes Reports

, Volume 13, Issue 2, pp 213–222 | Cite as

The Links Between Insulin Resistance, Diabetes, and Cancer

Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)

Abstract

The growing epidemic of obesity has resulted in a large increase in multiple related diseases. Recent evidence has strengthened the proposed synergistic relationship between obesity-related insulin resistance (IR) and/or diabetes mellitus (DM) and cancer. Within the past year, many studies have examined this relationship. Although the precise mechanisms and pathways are uncertain, it is becoming clear that hyperinsulinemia and possibly sustained hyperglycemia are important regulators of not only the development of cancer but also of treatment outcome. Further, clinical decision-making regarding the treatment of choice for DM will likely be impacted as we learn more about the non-metabolic effects of the available hyperglycemic agents. In our review, we endeavored to synthesize the recent literature and provide a concise view of the journey from macro-level clinical associations to specific mechanistic relationships being elucidated in cell lines and animal models.

Keywords

Apoptosis Caloric restriction Cancer Chemotherapy resistance Glargine Insulin Insulin resistance Metabolic syndrome Metformin Obesity Proliferation Diabetes 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Maynard GD. A statistical study in cancer death rates. Biometrika. 1910;7:276–304.CrossRefGoogle Scholar
  2. 2.
    Eheman C, Henley SJ, Ballard-Barbash R, Jacobs EJ, Schymura MJ, Noone AM, et al. Annual report to the nation on the status of cancer, 1975–2008, featuring cancers associated with excess weight and lack of sufficient physical activity. Cancer. 2012;118:2338–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.PubMedCrossRefGoogle Scholar
  4. 4.
    Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378:31–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94:311–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J Natl Cancer Inst. 2005;97:1679–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer. 2007;121:856–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Deng L, Gui Z, Zhao L, Wang J, Shen L. Diabetes mellitus and the incidence of colorectal cancer: an updated systematic review and meta-analysis. Dig Dis Sci. 2012;57:1576–85.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang C, Wang X, Gong G, Ben Q, Qiu W, Chen Y, et al. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies. Int J Cancer. 2012;130:1639–48.PubMedCrossRefGoogle Scholar
  11. 11.
    Ben Q, Xu M, Ning X, Liu J, Hong S, Huang W, et al. Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies. Eur J Cancer. 2011;47:1928–37.PubMedCrossRefGoogle Scholar
  12. 12.
    Boyle P, Boniol M, Koechlin A, Robertson C, Valentini F, Coppens K, et al. Diabetes and breast cancer risk: a meta-analysis. Br J Cancer. 2012;107:1608–17.PubMedCrossRefGoogle Scholar
  13. 13.
    Lambe M, Wigertz A, Garmo H, Walldius G, Jungner I, Hammar N. Impaired glucose metabolism and diabetes and the risk of breast, endometrial, and ovarian cancer. Canc Causes Contr. 2011;22:1163–71.CrossRefGoogle Scholar
  14. 14.
    Larsson SC, Wolk A. Diabetes mellitus and incidence of kidney cancer: a meta-analysis of cohort studies. Diabetologia. 2011;54:1013–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Wotton CJ, Yeates DG, Goldacre MJ. Cancer in patients admitted to hospital with diabetes mellitus aged 30 years and over: record linkage studies. Diabetologia. 2011;54:527–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Gapstur SM, Patel AV, Diver WR, Hildebrand JS, Gaudet MM, Jacobs EJ, et al. Type 2 diabetes mellitus and the incidence of epithelial ovarian cancer in the cancer prevention study-II nutrition cohort. Canc Epidemiol Biomarkers Prev. 2012;21:2000–5.CrossRefGoogle Scholar
  17. 17.
    Carstensen B, Witte DR, Friis S. Cancer occurrence in Danish diabetic patients: duration and insulin effects. Diabetologia. 2012;55:948–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim JW, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66:8927–30.PubMedCrossRefGoogle Scholar
  19. 19.
    Nagle CM, Olsen CM, Ibiebele TI, Spurdle AB, Webb PM, Group TANECS, et al. Glycemic index, glycemic load and endometrial cancer risk: results from the Australian National Endometrial Cancer study and an updated systematic review and meta-analysis. Eur J Nutr. 2012; doi:10.1007/s00394-012-0376-7
  20. 20.
    Nothlings U, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN. Dietary glycemic load, added sugars, and carbohydrates as risk factors for pancreatic cancer: the Multiethnic Cohort Study. Am.J. Clin Nutr. 2007;86:1495–501.Google Scholar
  21. 21.
    Johnson JA, Bowker SL. Intensive glycaemic control and cancer risk in type 2 diabetes: a meta-analysis of major trials. Diabetologia. 2011;54:25–31.PubMedCrossRefGoogle Scholar
  22. 22.
    Boyd DB. Insulin and cancer. Integr Canc Ther. 2003;2:315–29.CrossRefGoogle Scholar
  23. 23.
    Baur DM, Klotsche J, Hamnvik OP, Sievers C, Pieper L, Wittchen HU, et al. Type 2 diabetes mellitus and medications for type 2 diabetes mellitus are associated with risk for and mortality from cancer in a German primary care cohort. Metabolism. 2011;60:1363–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Soranna D, Scotti L, Zambon A, Bosetti C, Grassi G, Catapano A, et al. Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist. 2012;17:813–22.PubMedCrossRefGoogle Scholar
  25. 25.
    Chang CH, Lin JW, Wu LC, Lai MS, Chuang LM. Oral insulin secretagogues, insulin, and cancer risk in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97:E1170–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Chang CH, Lin JW, Wu LC, Lai MS, Chuang LM, Chan KA. Association of thiazolidinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus. Hepatology. 2012;55:1462–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Colmers IN, Bowker SL, Majumdar SR, Johnson JA. Use of thiazolidinediones and the risk of bladder cancer among people with type 2 diabetes: a meta-analysis. CMAJ. 2012;184:E675–83.PubMedCrossRefGoogle Scholar
  28. 28.
    Yang YX, Hennessy S, Lewis JD. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients. Gastroenterology. 2004;127:1044–50.PubMedCrossRefGoogle Scholar
  29. 29.
    • Hemkens LG, Grouven U, Bender R, Günster C, Gutschmidt S, Selke GW, et al. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia. 2009;52:1732–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Colhoun HM, Group SE. Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia. 2009;52:1755–65.PubMedCrossRefGoogle Scholar
  31. 31.
    Jonasson JM, Ljung R, Talbäck M, Haglund B, Gudbjörnsdóttir S, Steineck G. Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden. Diabetologia. 2009;52:1745–54.PubMedCrossRefGoogle Scholar
  32. 32.
    Ljung R, Talböck M, Haglund B, Jonasson JM, Gudbjörnsdóttir S, Steineck G. Insulin glargine use and short-term incidence of breast cancer - a four-year population-based observation. Acta Oncol. 2012;51:400–2.PubMedCrossRefGoogle Scholar
  33. 33.
    Fagot JP, Blotière PO, Ricordeau P, Weill A, Alla F, Allemand H. Does insulin glargine increase the risk of cancer compared with other Basal insulins?: a French nationwide cohort study based on national administrative databases. Diabetes Care. 2012; doi:10.2337/dc12-0506
  34. 34.
    Ruiter R, Visser LE, van Herk-Sukel MP, Coebergh JW, Haak HR, Geelhoed-Duijvestijn PH, et al. Risk of cancer in patients on insulin glargine and other insulin analogues in comparison with those on human insulin: results from a large population-based follow-up study. Diabetologia. 2012;55:51–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Chang CH, Toh S, Lin JW, Chen ST, Kuo CW, Chuang LM, et al. Cancer risk associated with insulin glargine among adult type 2 diabetes patients—a nationwide cohort study. PLoS One. 2011;6:e21368.PubMedCrossRefGoogle Scholar
  36. 36.
    Gerstein HC, Bosch J, Dagenais GR, Diaz R, Jung H, Maggioni AP, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367:319–28.PubMedCrossRefGoogle Scholar
  37. 37.
    •• Coughlin SS, Calle EE, Teras LR, Petrelli J, Thun MJ. Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol. 2004;159:1160–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Bakhru A, Buckanovich RJ, Griggs JJ. The impact of diabetes on survival in women with ovarian cancer. Gynecol Oncol. 2011;121:106–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Noto H, Goto A, Tsujimoto T, Noda M. Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS One. 2012;7:e33411.PubMedCrossRefGoogle Scholar
  40. 40.
    Erickson K, Patterson RE, Flatt SW, Natarajan L, Parker BA, Heath DD, et al. Clinically defined type 2 diabetes mellitus and prognosis in early-stage breast cancer. J Clin Oncol. 2011;29:54–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL. Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care. 2012;35:299–304.PubMedCrossRefGoogle Scholar
  42. 42.
    Dehal AN, Newton CC, Jacobs EJ, Patel AV, Gapstur SM, Campbell PT. Impact of diabetes mellitus and insulin use on survival after colorectal cancer diagnosis: the cancer prevention study-II nutrition cohort. J Clin Oncol. 2012;30:53–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, Hsu L, et al. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer. 2012;118:1202–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Stocks T, Borena W, Strohmaier S, Bjørge T, Manjer J, Engeland A, et al. Cohort profile: the metabolic syndrome and cancer project (Me-Can). Int J Epidemiol. 2010;39:660–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Stocks T, Rapp K, Bjørge T, Manjer J, Ulmer H, Selmer R, et al. Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (me-can): analysis of six prospective cohorts. PLoS Med. 2009;6:e1000201.PubMedCrossRefGoogle Scholar
  46. 46.
    Ulmer H, Björge T, Concin H, Lukanova A, Manjer J, Hallmans G, et al. Metabolic risk factors and cervical cancer in the metabolic syndrome and cancer project (Me-Can). Gynecol Oncol. 2012;125:330–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Borena W, Strohmaier S, Lukanova A, Bjørge T, Lindkvist B, Hallmans G, et al. Metabolic risk factors and primary liver cancer in a prospective study of 578,700 adults. Int J Cancer. 2012;131:193–200.PubMedCrossRefGoogle Scholar
  48. 48.
    Almquist M, Johansen D, Bjørge T, Ulmer H, Lindkvist B, Stocks T, et al. Metabolic factors and risk of thyroid cancer in the metabolic syndrome and cancer project (Me-Can). Canc Causes Contr. 2011;22:743–51.CrossRefGoogle Scholar
  49. 49.
    Bjørge T, Lukanova A, Jonsson H, Tretli S, Ulmer H, Manjer J, et al. Metabolic syndrome and breast cancer in the me-can (metabolic syndrome and cancer) project. Canc Epidemiol Biomarkers Prev. 2010;19:1737–45.CrossRefGoogle Scholar
  50. 50.
    Porto LA, Lora KJ, Soares JC, Costa LO. Metabolic syndrome is an independent risk factor for breast cancer. Arch Gynecol Obstet. 2011;284:1271–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Bjørge T, Lukanova A, Tretli S, Manjer J, Ulmer H, Stocks T, et al. Metabolic risk factors and ovarian cancer in the metabolic syndrome and cancer project. Int J Epidemiol. 2011;40:1667–77.PubMedCrossRefGoogle Scholar
  52. 52.
    Petridou ET, Sergentanis TN, Antonopoulos CN, Dessypris N, Matsoukis IL, Aronis K, et al. Insulin resistance: an independent risk factor for lung cancer? Metabolism. 2011;60:1100–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Edlinger M, Strohmaier S, Jonsson H, Bjørge T, Manjer J, Borena WT, et al. Blood pressure and other metabolic syndrome factors and risk of brain tumour in the large population-based Me-Can cohort study. J Hypertens. 2012;30:290–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Nagel G, Bjørge T, Stocks T, Manjer J, Hallmans G, Edlinger M, et al. Metabolic risk factors and skin cancer in the metabolic syndrome and cancer project (Me-Can). Br J Dermatol. 2012;167:59–67.PubMedCrossRefGoogle Scholar
  55. 55.
    Ford ES. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care. 2005;28:2745–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5.PubMedCrossRefGoogle Scholar
  57. 57.
    •• Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33:1674–85.PubMedCrossRefGoogle Scholar
  58. 58.
    Belfiore A, Malaguarnera R. Insulin receptor and cancer. Endocr Relat Canc. 2011;18:R125–47.CrossRefGoogle Scholar
  59. 59.
    Kim JS, Kim ES, Liu D, Lee JJ, Solis L, Behrens C, et al. Prognostic impact of insulin receptor expression on survival of patients with nonsmall cell lung cancer. Cancer. 2012;118:2454–65.PubMedCrossRefGoogle Scholar
  60. 60.
    Esposito DL, Aru F, Lattanzio R, Morgano A, Abbondanza M, Malekzadeh R, et al. The insulin receptor substrate 1 (IRS1) in intestinal epithelial differentiation and in colorectal cancer. PLoS One. 2012;7:e36190.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang Y, Hua S, Tian W, Zhang L, Zhao J, Zhang H, et al. Mitogenic and anti-apoptotic effects of insulin in endometrial cancer are phosphatidylinositol 3-kinase/Akt dependent. Gynecol Oncol. 2012;125:734–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Morvan D, Steyaert JM, Schwartz L, Israel M, Demidem A. Normal human melanocytes exposed to chronic insulin and glucose supplementation undergo oncogenic changes and methyl group metabolism cellular redistribution. Am J Physiol Endocrinol Metab. 2012;302:E1407–18.PubMedCrossRefGoogle Scholar
  63. 63.
    Chan SH, Kikkawa U, Matsuzaki H, Chen JH, Chang WC. Insulin receptor substrate-1 prevents autophagy-dependent cell death caused by oxidative stress in mouse NIH/3 T3 cells. J Biomed Sci. 2012;19:64.PubMedCrossRefGoogle Scholar
  64. 64.
    Marconett CN, Singhal AK, Sundar SN, Firestone GL. Indole-3-carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells. Mol Cell Endocrinol. 2012;363:74–84.PubMedCrossRefGoogle Scholar
  65. 65.
    Zeng X, Zhang H, Oh A, Zhang Y, Yee D. Enhancement of doxorubicin cytotoxicity of human cancer cells by tyrosine kinase inhibition of insulin receptor and type I IGF receptor. Breast Canc Res Treat. 2012;133:117–26.CrossRefGoogle Scholar
  66. 66.
    Fox EM, Miller TW, Balko JM, Kuba MG, Sanchez V, Smith RA, et al. A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer. Cancer Res. 2011;71:6773–84.PubMedCrossRefGoogle Scholar
  67. 67.
    Rose DP, Vona-Davis L. The cellular and molecular mechanisms by which insulin influences breast cancer risk and progression. Endocr Relat Canc. 2012;19:R225–41.CrossRefGoogle Scholar
  68. 68.
    Tomas NM, Masur K, Piecha JC, Niggemann B, Zanker KS. Akt and phospholipase Cgamma are involved in the regulation of growth and migration of MDA-MB-468 breast cancer and SW480 colon cancer cells when cultured with diabetogenic levels of glucose and insulin. BMC Res Notes. 2012;5:214.PubMedCrossRefGoogle Scholar
  69. 69.
    Stohr O, Hahn J, Moll L, Leeser U, Freude S, Bernard C, et al. Insulin receptor substrate-1 and -2 mediate resistance to glucose-induced caspase-3 activation in human neuroblastoma cells. Biochim Biophys Acta. 2011;1812:573–80.PubMedCrossRefGoogle Scholar
  70. 70.
    Gallagher EJ, Fierz Y, Vijayakumar A, Haddad N, Yakar S, Leroith D. Inhibiting PI3K reduces mammary tumor growth and induces hyperglycemia in a mouse model of insulin resistance and hyperinsulinemia. Oncogene. 2012;31:3213–22.PubMedCrossRefGoogle Scholar
  71. 71.
    Ward WK, LaCava EC, Paquette TL, Beard JC, Wallum BJ, Porte Jr D. Disproportionate elevation of immunoreactive proinsulin in type 2 (non-insulin-dependent) diabetes mellitus and in experimental insulin resistance. Diabetologia. 1987;30:698–702.PubMedCrossRefGoogle Scholar
  72. 72.
    Malaguarnera R, Sacco A, Voci C, Pandini G, Vigneri R, Belfiore A. Proinsulin binds with high affinity the insulin receptor isoform A and predominantly activates the mitogenic pathway. Endocrinology. 2012;153:2152–63.PubMedCrossRefGoogle Scholar
  73. 73.
    Cao Y, Evans SC, Soans E, Malki A, Liu Y, Liu Y, et al. Insulin receptor signaling activated by penta-O-galloyl-alpha-D: -glucopyranose induces p53 and apoptosis in cancer cells. Apoptosis. 2011;16:902–13.PubMedCrossRefGoogle Scholar
  74. 74.
    Porter HA, Carey GB, Keegan AD. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death. Exp Cell Res. 2012;318:1745–58.PubMedCrossRefGoogle Scholar
  75. 75.
    Teng JA, Hou RL, Li DL, Yang RP, Qin J. Glargine promotes proliferation of breast adenocarcinoma cell line MCF-7 via AKT activation. Horm Metab Res. 2011;43:519–23.PubMedCrossRefGoogle Scholar
  76. 76.
    Pierre-Eugene C, Pagesy P, Nguyen TT, Neuill M, Tschank G, Tennagels N, et al. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2. PLoS One. 2012;7:e41992.PubMedCrossRefGoogle Scholar
  77. 77.
    Li WG, Yuan YZ, Qiao MM, Zhang YP. High dose glargine alters the expression profiles of microRNAs in pancreatic cancer cells. World J Gastroenterol. 2012;18:2630–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Pan J, Chen C, Jin Y, Fuentes-Mattei E, Velazquez-Tores G, Benito JM, et al. Differential impact of structurally different anti-diabetic drugs on proliferation and chemosensitivity of acute lymphoblastic leukemia cells. Cell Cycle. 2012;11:2314–26.PubMedCrossRefGoogle Scholar
  79. 79.
    Luzio S, Dunseath G, Peter R, Pauvaday V, Owens DR. Comparison of the pharmacokinetics and pharmacodynamics of biphasic insulin aspart and insulin glargine in people with type 2 diabetes. Diabetologia. 2006;49:1163–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Wu CL, Qiang L, Han W, Ming M, Viollet B, He YY. Role of AMPK in UVB-induced DNA damage repair and growth control. Oncogene. 2012; doi:10.1038/onc.2012.279.
  81. 81.
    Chaudhary SC, Kurundkar D, Elmets CA, Kopelovich L, Athar M. Metformin, an antidiabetic agent reduces growth of cutaneous squamous cell carcinoma by targeting mTOR signaling pathway. Photochem Photobiol. 2012;88:1149–56.PubMedCrossRefGoogle Scholar
  82. 82.
    Chan DK, Miskimins WK. Metformin and phenethyl isothiocyanate combined treatment in vitro is cytotoxic to ovarian cancer cultures. J Ovarian Res. 2012;5:19.PubMedCrossRefGoogle Scholar
  83. 83.
    Deng XS, Wang S, Deng A, Liu B, Edgerton SM, Lind SE, et al. Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle. 2012;11:367–76.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhuang Y, Miskimins WK. Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol Canc Res. 2011;9:603–15.CrossRefGoogle Scholar
  85. 85.
    Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69:7507–11.PubMedCrossRefGoogle Scholar
  86. 86.
    Shank JJ, Yang K, Ghannam J, Cabrera L, Johnston CJ, Reynolds RK, et al. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol Oncol. 2012;127:390–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH, et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Canc Prev Res (Phila). 2012;5:355–64.CrossRefGoogle Scholar
  88. 88.
    Chen G, Xu S, Renko K, Derwahl M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab. 2012;97:E510–20.PubMedCrossRefGoogle Scholar
  89. 89.
    Cufi S, Corominas-Faja B, Vazquez-Martin A, Oliveras-Ferraros C, Dorca J, Bosch-Barrera J, et al. Metformin-induced preferential killing of breast cancer initiating CD44 + CD24-/low cells is sufficient to overcome primary resistance to trastuzumab in HER2+ human breast cancer xenografts. Oncotarget. 2012;3:395–8.PubMedGoogle Scholar
  90. 90.
    Appleyard MVCL, Murray KE, Coates PJ, Wullschleger S, Bray SE, Kernohan NM, et al. Phenformin as prophylaxis and therapy in breast cancer xenografts. Br J Cancer. 2012;106:1117–22.PubMedCrossRefGoogle Scholar
  91. 91.
    Isaksson OG, Ohlsson C, Nilsson A, Isgaard J, Lindahl A. Regulation of cartilage growth by growth hormone and insulin-like growth factor I. Pediatr Nephrol. 1991;5:451–3.PubMedCrossRefGoogle Scholar
  92. 92.
    Weroha SJ, Haluska P. The insulin-like growth factor system in cancer. Endocrinol Metab ClinNorth Am. 2012;41:335–50.CrossRefGoogle Scholar
  93. 93.
    Yamamoto T, Oshima T, Yoshihara K, Nishi T, Arai H, Inui K, et al. Clinical significance of immunohistochemical expression of insulin-like growth factor-1 receptor and matrix metalloproteinase-7 in resected non-small cell lung cancer. Exp Ther Med. 2012;3:797–802.PubMedGoogle Scholar
  94. 94.
    Shan J, Shen J, Liu L, Xia F, Xu C, Duan G, et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology. 2012;56:1004–14.PubMedCrossRefGoogle Scholar
  95. 95.
    Sun Y, Zheng S, Torossian A, Speirs CK, Schleicher S, Giacalone NJ, et al. Role of insulin-like growth factor-1 signaling pathway in cisplatin-resistant lung cancer cells. Int J Radiat Oncol Biol Phys. 2012;82:e563–72.PubMedCrossRefGoogle Scholar
  96. 96.
    Heidegger I, Ofer P, Doppler W, Rotter V, Klocker H, Massoner P. Diverse functions of IGF/insulin signaling in malignant and noncancerous prostate cells: proliferation in cancer cells and differentiation in noncancerous cells. Endocrinology. 2012;153:4633–43.PubMedCrossRefGoogle Scholar
  97. 97.
    •• D'Esposito V, Passaretti F, Hammarstedt A, Liguoro D, Terracciano D, Molea G, et al. Adipocyte-released insulin-like growth factor-1 is regulated by glucose and fatty acids and controls breast cancer cell growth in vitro. Diabetologia. 2012;55:2811–22.PubMedCrossRefGoogle Scholar
  98. 98.
    Harvey AE, Lashinger LM, Otto G, Nunez NP, Hursting SD. Decreased systemic IGF-1 in response to calorie restriction modulates murine tumor cell growth, nuclear factor-kappaB activation, and inflammation-related gene expression. Mol Carcinog. 2012; doi:10.1002/mc.21940
  99. 99.
    Lau MT, Leung PC. The PI3K/Akt/mTOR signaling pathway mediates insulin-like growth factor 1-induced E-cadherin down-regulation and cell proliferation in ovarian cancer cells. Cancer Lett. 2012;326:191–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang YW, Yan DL, Wang W, Zhao HW, Lu X, Wu JZ, et al. Knockdown of insulin-like growth factor I receptor inhibits the growth and enhances chemo-sensitivity of liver cancer cells. Curr Canc Drug Targets. 2012;12:74–84.CrossRefGoogle Scholar
  101. 101.
    Kim JG, Kang MJ, Yoon YK, Kim HP, Park J, Song SH, et al. Heterodimerization of glycosylated insulin-like growth factor-1 receptors and insulin receptors in cancer cells sensitive to anti-IGF1R antibody. PLoS One. 2012;7:e33322.PubMedCrossRefGoogle Scholar
  102. 102.
    Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY, et al. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene. 2012; doi:10.1038/onc.2012.214
  103. 103.
    Shen K, Liang Q, Xu K, Cui D, Jiang L, Yin P, et al. MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor. Biochem Pharmacol. 2012;84:320–30.PubMedCrossRefGoogle Scholar
  104. 104.
    Zhao X, Dou W, He L, Liang S, Tie J, Liu C, et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene. 2012; doi:10.1038/onc.2012.156.
  105. 105.
    Tognon CE, Sorensen PH. Targeting the insulin-like growth factor 1 receptor (IGF1R) signaling pathway for cancer therapy. Expert Opin Ther Targets. 2012;16:33–48.PubMedCrossRefGoogle Scholar
  106. 106.
    Qi HW, Shen Z, Fan LH. Combined inhibition of insulin-like growth factor-1 receptor enhances the effects of gefitinib in a human non-small cell lung cancer resistant cell line. Exp Ther Med. 2011;2:1091–5.PubMedGoogle Scholar
  107. 107.
    Kim WY, Prudkin L, Feng L, Kim ES, Hennessy B, Lee JS, et al. Epidermal growth factor receptor and K-Ras mutations and resistance of lung cancer to insulin-like growth factor 1 receptor tyrosine kinase inhibitors. Cancer. 2012;118:3993–4003.PubMedCrossRefGoogle Scholar
  108. 108.
    Fidler MJ, Basu S, Buckingham L, Walters K, McCormack S, Batus M, et al. Utility of insulin-like growth factor receptor-1 expression in gefitinib-treated patients with non-small cell lung cancer. Anticancer Res. 2012;32:1705–10.PubMedGoogle Scholar
  109. 109.
    Ramalingam SS, Spigel DR, Chen D, Steins MB, Engelman JA, Schneider CP, et al. Randomized phase II study of erlotinib in combination with placebo or R1507, a monoclonal antibody to insulin-like growth factor-1 receptor, for advanced-stage non-small-cell lung cancer. J Clin Oncol. 2011;29:4574–80.PubMedCrossRefGoogle Scholar
  110. 110.
    Friedlander TW, Weinberg VK, Huang Y, Mi JT, Formaker CG, Small EJ, et al. A phase II study of insulin-like growth factor receptor inhibition with nordihydroguaiaretic acid in men with non-metastatic hormone-sensitive prostate cancer. Oncol Rep. 2012;27:3–9.PubMedGoogle Scholar
  111. 111.
    Shao M, Hollar S, Chambliss D, Schmitt J, Emerson R, Chelladurai B, et al. Targeting the insulin growth factor and the vascular endothelial growth factor pathways in ovarian cancer. Mol Cancer Ther. 2012;11:1576–86.PubMedCrossRefGoogle Scholar
  112. 112.
    De Marco P, Bartella V, Vivacqua A, Lappano R, Santolla MF, Morcavallo A, et al. Insulin-like growth factor-I regulates GPER expression and function in cancer cells. Oncogene. 2012; doi:10.1038/onc.2012.97.
  113. 113.
    Periyasamy-Thandavan S, Takhar S, Singer A, Dohn MR, Jackson WH, Welborn AE, et al. Insulin-like growth factor 1 attenuates antiestrogen- and antiprogestin-induced apoptosis in ER + breast cancer cells by MEK1 regulation of the BH3-only pro-apoptotic protein Bim. Breast Canc Res. 2012;14:R52.CrossRefGoogle Scholar
  114. 114.
    Behan JW, Avramis VI, Yun JP, Louie SG, Mittelman SD. Diet-induced obesity alters vincristine pharmacokinetics in blood and tissues of mice. Pharmacol Res. 2010;61:385–90.PubMedCrossRefGoogle Scholar
  115. 115.
    Behan JW, Yun JP, Proektor MP, Ehsanipour EA, Arutyunyan A, Moses AS, et al. Adipocytes impair leukemia treatment in mice. Cancer Res. 2009;69:7867–74.PubMedCrossRefGoogle Scholar
  116. 116.
    Drew JE. Molecular mechanisms linking adipokines to obesity-related colon cancer: focus on leptin. Proc Nutr Soc. 2012;71:175–80.PubMedCrossRefGoogle Scholar
  117. 117.
    • Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 2010;140:49–61.PubMedCrossRefGoogle Scholar
  118. 118.
    Safdie F, Brandhorst S, Wei M, Wang W, Lee C, Hwang S, et al. Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS One. 2012;7:e44603.PubMedCrossRefGoogle Scholar
  119. 119.
    Fine EJ, Segal-Isaacson CJ, Feinman RD, Herszkopf S, Romano MC, Tomuta N, et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition. 2012;28:1028–35.PubMedCrossRefGoogle Scholar
  120. 120.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–38.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Jonathan Jaques Children’s Cancer Center, Keck School of MedicineUniversity of Southern California, Miller Children’s HospitalLong BeachUSA
  2. 2.Children’s Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations