Skip to main content

Advertisement

Log in

Glycemic Variability in Hospitalized Patients: Choosing Metrics While Awaiting the Evidence

  • Hospital Management of Diabetes (G Umpierrez, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Hyperglycemia, hypoglycemia, preexisting diabetes, and glycemic variability each may affect hospital outcomes. Observational findings derived from randomized trials or retrospective studies suggest that independent of hypoglycemia and hyperglycemia, a relationship exists between variability and hospital outcomes. A review of studies conducted in diverse hospital populations is reported here, showing a relationship between measures of variability and nonglycemic outcomes, including ICU and hospital mortality and length of stay. “Glycemic variability” has an intuitive meaning, understood as a propensity of a single patient to develop repeated episodes of excursions of BG over a relatively short period of time that exceed the amplitude expected in normal physiology. It is proposed that each of 3 dimensions of variability should be separately studied: (1) magnitude of glycemic excursions during intervals of relative stability of the moving average of BG, (2) frequency with which a critical magnitude of excursion is exceeded, and (3) presence or absence of fine tuning. Multiple hospital studies have found that the standard deviation (SD) of the data set of blood glucose values (BG) of individual patients predicts outcomes. An appropriate refinement would be to report the “Reverse-transformed group mean of the SD of the logarithmically transformed BG data set of each patient,” with confidence intervals. In logarithmic space, group means of the SD of BGs of each patient may be compared, using an appropriate parametric test. Upon reverse transformation, the upper and lower bounds of the confidence intervals become asymmetric about the reverse-transformed group mean of the SD. There is a need to understand what patterns of dispersion of BG over time are captured by SD as a predictor of outcomes. Among the causes of high SD, a subgroup may consist of patients having frequent oscillations of BG. Another subgroup may consist of patients experiencing a major change of overall glycemia during the timeframe of data collection. Appropriate metrics should be developed to recognize both variability in the sense of recurrent large oscillations of BG, and separately to recognize any time-dependent change of overall glycemia during hospitalization. Especially in relation to uncontrolled diabetes, there is a need to know whether rapid correction of chronic hyperglycemia adversely affects hospital outcomes. We have some understanding of how to control or prevent change of overall glycemia, and less understanding of how to control variability. Each may be associated with outcomes, and each may be detected by a high SD, but it remains uncertain whether intervention to prevent either pattern of changing glycemia would affect outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  PubMed  CAS  Google Scholar 

  2. Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A. Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab. 2001;281:E924–30.

    PubMed  CAS  Google Scholar 

  3. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106:2067–72.

    Article  PubMed  CAS  Google Scholar 

  4. Esposito K, Marfella R, Giugliano D. Hyperglycemia and heart dysfunction: an oxidant mechanism contributing to heart failure in diabetes. J Endocrinol Invest. 2002;25:485–8.

    PubMed  CAS  Google Scholar 

  5. Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes. 2003;52:2795–804.

    Article  PubMed  CAS  Google Scholar 

  6. Hirsch IB. Glycemic variability: it's not just about A1C anymore! Diabetes Technol Therapeut. 2005;7:780–3.

    Article  Google Scholar 

  7. Hirsch IB, Brownlee M. Should minimal blood glucose variability become the gold standard of glycemic control? J Diabetes Complications. 2005;19:178–81.

    Article  PubMed  Google Scholar 

  8. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295:1681–7.

    Article  PubMed  CAS  Google Scholar 

  9. Watada H, Azuma K, Kawamori R. Glucose fluctuation on the progression of diabetic macroangiopathy–new findings from monocyte adhesion to endothelial cells. Diabetes Res Clin Pract. 2007;77 Suppl 1:S58–61.

    Article  PubMed  CAS  Google Scholar 

  10. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57:1349–54.

    Article  PubMed  CAS  Google Scholar 

  11. Wentholt IM, Kulik W, Michels RP, Hoekstra JB, DeVries JH. Glucose fluctuations and activation of oxidative stress in patients with type 1 diabetes. Diabetologia. 2008;51:183–90.

    Article  PubMed  CAS  Google Scholar 

  12. Schisano B, Tripathi G, McGee K, McTernan PG, Ceriello A. Glucose oscillations, more than constant high glucose, induce p53 activation and a metabolic memory in human endothelial cells. Diabetologia. 2011;54:1219–26.

    Article  PubMed  CAS  Google Scholar 

  13. Service FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes. 1970;19:644–55.

    PubMed  CAS  Google Scholar 

  14. The Diabetes Control and Complications Trial Research Group. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. 1995;44:968–83.

    Google Scholar 

  15. Muggeo M, Zoppini G, Bonora E, Brun E, Bonadonna RC, Moghetti P, et al. Fasting plasma glucose variability predicts 10-year survival of type 2 diabetic patients: the verona diabetes study. Diabetes Care. 2000;23:45–50.

    Article  PubMed  CAS  Google Scholar 

  16. Kessler L, Passemard R, Oberholzer J, Benhamou PY, Bucher P, Toso C, et al. Reduction of blood glucose variability in type 1 diabetic patients treated by pancreatic islet transplantation: interest of continuous glucose monitoring. Diabetes Care. 2002;25:2256–62.

    Article  PubMed  CAS  Google Scholar 

  17. Ryan EA, Shandro T, Green K, Paty BW, Senior PA, Bigam D, et al. Assessment of the severity of hypoglycemia and glycemic lability in type 1 diabetic subjects undergoing islet transplantation. Diabetes. 2004;53:955–62.

    Article  PubMed  CAS  Google Scholar 

  18. Kovatchev BP, Otto E, Cox D, Gonder-Frederick L, Clarke W. Evaluation of a new measure of blood glucose variability in diabetes. Diabetes Care. 2006;29:2433–8.

    Article  PubMed  CAS  Google Scholar 

  19. Monnier L, Colette C, Leiter L, Ceriello A, Hanefeld M, Owens D, et al. The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care. 2007;30:185–6. author reply 7–8.

    Article  PubMed  Google Scholar 

  20. Lachin JM, Genuth S, Nathan DM, Zinman B, Rutledge BN. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial–revisited. Diabetes. 2008;57:995–1001.

    Article  PubMed  CAS  Google Scholar 

  21. Siegelaar SE, Kilpatrick ES, Rigby AS, Atkin SL, Hoekstra JB, Devries JH. Glucose variability does not contribute to the development of peripheral and autonomic neuropathy in type 1 diabetes: data from the DCCT. Diabetologia. 2009;52:2229–32.

    Article  PubMed  CAS  Google Scholar 

  22. Kilpatrick ES, Rigby AS, Atkin SL. Effect of glucose variability on the long-term risk of microvascular complications in type 1 diabetes. Diabetes Care. 2009;32:1901–3.

    Article  PubMed  Google Scholar 

  23. Rodbard D. New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol Ther. 2009;11:551–65.

    Article  PubMed  CAS  Google Scholar 

  24. Baghurst PA, Rodbard D, Cameron FJ. The minimum frequency of glucose measurements from which glycemic variation can be consistently assessed. J Diabetes Sci Technol. 2010;4:1382–5.

    PubMed  Google Scholar 

  25. Nalysnyk L, Hernandez-Medina M, Krishnarajah G. Glycaemic variability and complications in patients with diabetes mellitus: evidence from a systematic review of the literature. Diabetes Obes Metab. 2010;12:288–98.

    Article  PubMed  CAS  Google Scholar 

  26. Snell-Bergeon JK, Roman R, Rodbard D, Garg S, Maahs DM, Schauer IE, et al. Glycaemic variability is associated with coronary artery calcium in men with type 1 diabetes: the coronary artery calcification in type 1 diabetes study. Diabet Med. 2010;27:1436–42.

    Article  PubMed  CAS  Google Scholar 

  27. Ceriello A, Ihnat MA. ‘Glycaemic variability’: a new therapeutic challenge in diabetes and the critical care setting. Diabet Med. 2010;27:862–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kim SK, Kwon SB, Yoon KH, Ahn KJ, Kang JG, Jung HS, et al. Assessment of glycemic lability and severity of hypoglycemia in Korean patients with type 1 diabetes. Endocr J. 2011;58:433–40.

    Article  PubMed  CAS  Google Scholar 

  29. Rodbard D. Glycemic variability: measurement and utility in clinical medicine and research–one viewpoint. Diabetes Technol Ther. 2011;13:1077–80.

    Article  PubMed  Google Scholar 

  30. Rodbard D. Clinical interpretation of indices of quality of glycemic control and glycemic variability. Postgrad Med. 2011;123:107–18.

    Article  PubMed  Google Scholar 

  31. Siegelaar SE, Kerr L, Jacober SJ, Devries JH. A decrease in glucose variability does not reduce cardiovascular event rates in type 2 diabetic patients after acute myocardial infarction: a reanalysis of the HEART2D study. Diabetes Care. 2011;34:855–7.

    Article  PubMed  CAS  Google Scholar 

  32. Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology. 2006;105:244–52.

    Article  PubMed  CAS  Google Scholar 

  33. Wintergerst KA, Buckingham B, Gandrud L, Wong BJ, Kache S, Wilson DM. Association of hypoglycemia, hyperglycemia, and glucose variability with morbidity and death in the pediatric intensive care unit. Pediatrics. 2006;118:173–9.

    Article  PubMed  Google Scholar 

  34. Ali NA, O'Brien Jr JM, Dungan K, Phillips G, Marsh CB, Lemeshow S, et al. Glucose variability and mortality in patients with sepsis. Crit Care Med. 2008;36:2316–21.

    Article  PubMed  Google Scholar 

  35. Dossett LA, Cao H, Mowery NT, Dortch MJ, Morris Jr JM, May AK. Blood glucose variability is associated with mortality in the surgical intensive care unit. Am Surg. 2008;74:679–85. discussion 85.

    PubMed  Google Scholar 

  36. Hirshberg E, Larsen G, Van Duker H. Alterations in glucose homeostasis in the pediatric intensive care unit: hyperglycemia and glucose variability are associated with increased mortality and morbidity. Pediatr Crit Care Med. 2008;9:361–6.

    Article  PubMed  Google Scholar 

  37. Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36:3008–13.

    Article  PubMed  CAS  Google Scholar 

  38. Waeschle RM, Moerer O, Hilgers R, Herrmann P, Neumann P, Quintel M. The impact of the severity of sepsis on the risk of hypoglycaemia and glycaemic variability. Crit Care. 2008;12:R129.

    Article  PubMed  Google Scholar 

  39. Jacka MJ, Torok-Both CJ, Bagshaw SM. Blood glucose control among critically ill patients with brain injury. Can J Neurol Sci. 2009;36:436–42.

    PubMed  Google Scholar 

  40. Krinsley JS. Glycemic variability and mortality in critically ill patients: the impact of diabetes. J Diabetes Sci Technol. 2009;3:1292–301.

    PubMed  Google Scholar 

  41. Bagshaw SM, Bellomo R, Jacka MJ, Egi M, Hart GK, George C. The impact of early hypoglycemia and blood glucose variability on outcome in critical illness. Crit Care. 2009;13:R91.

    Article  PubMed  Google Scholar 

  42. Pidcoke HF, Wanek SM, Rohleder LS, Holcomb JB, Wolf SE, Wade CE. Glucose variability is associated with high mortality after severe burn. J Trauma. 2009;67:990–5.

    Article  PubMed  Google Scholar 

  43. Al-Dorzi HM, Tamim HM, Arabi YM. Glycaemic fluctuation predicts mortality in critically ill patients. Anaesth Intensive Care. 2010;38:695–702.

    PubMed  CAS  Google Scholar 

  44. • Hermanides J, Vriesendorp TM, Bosman RJ, Zandstra DF, Hoekstra JB, Devries JH. Glucose variability is associated with intensive care unit mortality. Crit Care Med. 2010;38:838–42. The paper is one of several examples of studies showing inferiority of SD to an alternative choice of metric for glycemic variability under the given set of conditions.

    Article  PubMed  CAS  Google Scholar 

  45. • Meyfroidt G, Keenan DM, Wang X, Wouters PJ, Veldhuis JD, Van den Berghe G. Dynamic characteristics of blood glucose time series during the course of critical illness: effects of intensive insulin therapy and relative association with mortality. Crit Care Med. 2010;38:1021–9. The Leuven, Belgium data is examined for patient-level evidence on the relationship of variability to insulin strategies and outcomes.

    Article  PubMed  CAS  Google Scholar 

  46. Cueni-Villoz N, Devigili A, Delodder F, Cianferoni S, Feihl F, Rossetti AO, et al. Increased blood glucose variability during therapeutic hypothermia and outcome after cardiac arrest. Crit Care Med. 2011;39:2225–31.

    Article  PubMed  Google Scholar 

  47. Dungan KM, Binkley P, Nagaraja HN, Schuster D, Osei K. The effect of glycaemic control and glycaemic variability on mortality in patients hospitalized with congestive heart failure. Diabetes Metab Res Rev. 2011;27:85–93.

    Article  PubMed  CAS  Google Scholar 

  48. Kauffmann RM, Hayes RM, Buske BD, Norris PR, Campion Jr TR, Dortch M, et al. Increasing blood glucose variability heralds hypoglycemia in the critically ill. J Surg Res. 2011;170:257–64.

    Article  PubMed  CAS  Google Scholar 

  49. •• Mackenzie IM, Whitehouse T, Nightingale PG. The metrics of glycaemic control in critical care. Intensive Care Med. 2011;37:435–43. The investigators develop a classification of 3 major groups of metrics related to glucose control in the ICU. The paper reports that in the context of each of 4 adult ICU’s, metrics of central tendency, measures of dispersion, and a measure of minimum glucose were independently predictive of hospital mortality. The electronic supplementary materials accompanying the article present the equations for the calculation of complex glucose metrics.

    Article  PubMed  CAS  Google Scholar 

  50. •• Meynaar IA, Eslami S, Abu-Hanna A, van der Voort P, de Lange DW, de Keizer N. Blood glucose amplitude variability as predictor for mortality in surgical and medical intensive care unit patients: a multicenter cohort study. J Crit Care. 2012;27:119–24. The study is important because of the large number of patients and the novel purpose of the study, which was to conduct a careful comparative evaluation of each of several metrics for glycemic variability in the ICU. For all 20,375 patients, adjusted hospital mortality was associated with SD and MAGE, but not with MAG or GLI. Among the surgical patients, adjusted mortality was associated with SD, MAGE, and MAG, but not with GLI. Among medical patients, adjusted mortality was associated with SD but not with MAGE, MAG, or GLI.

    Article  PubMed  CAS  Google Scholar 

  51. Zuo YY, Kang Y, Yin WH, Wang B, Chen Y. The association of mean glucose level and glucose variability with intensive care unit mortality in patients with severe acute pancreatitis. J Crit Care. 2012;27:146–52.

    Article  PubMed  CAS  Google Scholar 

  52. Mendez CE, Mok K-T, Ata A, Ranenberg RJ. Increased glucose variability is independently associated with longer length of stay and mortality in non-critically ill hospitalized patients (abstract). Diabetes. 2012;61 Suppl 1:A3.

    Google Scholar 

  53. Freire AX, Murillo LC. How "sweet" complexity is and how "bitter" variability can be; the new aspect of intensive care unit hyperglycemia. Crit Care Med. 2010;38:996–7.

    Article  PubMed  Google Scholar 

  54. Kilpatrick ES, Rigby AS, Atkin SL. For debate. Glucose variability and diabetes complication risk: we need to know the answer. Diabet Med. 2010;27:868–71.

    Article  PubMed  CAS  Google Scholar 

  55. Krinsley JS. Glycemic variability in critical illness and the end of chapter 1. Crit Care Med. 2010;38:1206–8.

    Article  PubMed  Google Scholar 

  56. • Siegelaar SE, Holleman F, Hoekstra JB, DeVries JH. Glucose variability; does it matter? Endocr Rev. 2010;31:171–82. Although this review of glycemic variability is not restricted to the hospital setting, putative mechanisms of harm related to glycemic variability are discussed.

    Article  PubMed  CAS  Google Scholar 

  57. Vincent JL. Blood glucose control in 2010: 110 to 150 mg/dL and minimal variability. Crit Care Med. 2010;38:993–5.

    Article  PubMed  Google Scholar 

  58. • Eslami S, Taherzadeh Z, Schultz MJ, Abu-Hanna A. Glucose variability measures and their effect on mortality: a systematic review. Intensive Care Med. 2011;37:583–93. The paper is an excellent review of the evidence on the relationship between glycemic variability and outcomes.

    Article  PubMed  Google Scholar 

  59. Harmsen RE, Spronk PE, Schultz MJ, Abu-Hanna A. May frequency of blood glucose measurement be blurring the association between mean absolute glucose change per hour and mortality? Crit Care Med. 2011;39:224. author reply–5.

    Article  PubMed  Google Scholar 

  60. Krinsley JS. Understanding glycemic control in the critically ill: 3 domains are better than one. Intensive Care Med. 2011;37:382–4.

    Article  PubMed  Google Scholar 

  61. De Block C, Manuel-y-Keenoy B, Rogiers P, Jorens P, Van Gaal L. Glucose control and use of continuous glucose monitoring in the intensive care unit: a critical review. Curr Diabetes Rev. 2008;4:234–44.

    Article  PubMed  Google Scholar 

  62. Holzinger U, Warszawska J, Kitzberger R, Wewalka M, Miehsler W, Herkner H, et al. Real-time continuous glucose monitoring in critically ill patients: a prospective randomized trial. Diabetes Care. 2010;33:467–72.

    Article  PubMed  CAS  Google Scholar 

  63. Klonoff DC, Buckingham B, Christiansen JS, Montori VM, Tamborlane WV, Vigersky RA, et al. Continuous glucose monitoring: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:2968–79.

    Article  PubMed  CAS  Google Scholar 

  64. Van Herpe T, De Brabanter J, Beullens M, De Moor B, Van den Berghe G. Glycemic penalty index for adequately assessing and comparing different blood glucose control algorithms. Crit Care. 2008;12:R24.

    Article  PubMed  Google Scholar 

  65. Griesdale D, de Souza R, van Dam R, Heyland D, Cook D, Malhotra A, et al. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180:821–7.

    Article  PubMed  Google Scholar 

  66. Murad MH, Coburn JA, Coto-Yglesias F, Dzyubak S, Hazem A, Lane MA, et al. Glycemic control in non-critically ill hospitalized patients: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2012;97:49–58.

    Article  PubMed  CAS  Google Scholar 

  67. Vriesendorp TM, van Santen S, DeVries JH, de Jonge E, Rosendaal FR, Schultz MJ, et al. Predisposing factors for hypoglycemia in the intensive care unit. Crit Care Med. 2006;34:96–101.

    Article  PubMed  Google Scholar 

  68. Krinsley JS, Grover A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med. 2007;35:2262–7.

    Article  PubMed  Google Scholar 

  69. Arabi YM, Tamim HM, Rishu AH. Hypoglycemia with intensive insulin therapy in critically ill patients: predisposing factors and association with mortality. Crit Care Med. 2009;37:2536–44.

    Article  PubMed  CAS  Google Scholar 

  70. Kosiborod M, Inzucchi SE, Goyal A, Krumholz HM, Masoudi FA, Xiao L, et al. Relationship between spontaneous and iatrogenic hypoglycemia and mortality in patients hospitalized with acute myocardial infarction. JAMA. 2009;301:1556–64.

    Article  PubMed  CAS  Google Scholar 

  71. Egi M, Bellomo R, Stachowski E, French CJ, Hart GK, Taori G, et al. Hypoglycemia and outcome in critically ill patients. Mayo Clin Proc. 2010;85:217–24.

    Article  PubMed  Google Scholar 

  72. Hermanides J, Bosman RJ, Vriesendorp TM, Dotsch R, Rosendaal FR, Zandstra DF, et al. Hypoglycemia is associated with intensive care unit mortality. Crit Care Med. 2010;38:1430–4.

    Article  PubMed  Google Scholar 

  73. Mowery NT, Guillamondegui OD, Gunter OL, Diaz Jr JJ, Collier BR, Dossett LA, et al. Severe hypoglycemia while on intensive insulin therapy is not an independent predictor of death after trauma. J Trauma. 2010;68:342–7.

    Article  PubMed  CAS  Google Scholar 

  74. Kosiborod M, Rathore SS, Inzucchi SE, Masoudi FA, Wang Y, Havranek EP, et al. Admission glucose and mortality in elderly patients hospitalized with acute myocardial infarction: implications for patients with and without recognized diabetes. Circulation. 2005;111:3078–86.

    Article  PubMed  CAS  Google Scholar 

  75. Pinto DS, Skolnick AH, Kirtane AJ, Murphy SA, Barron HV, Giugliano RP, et al. U-shaped relationship of blood glucose with adverse outcomes among patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2005;46:178–80.

    Article  PubMed  CAS  Google Scholar 

  76. Svensson AM, McGuire DK, Abrahamsson P, Dellborg M. Association between hyper- and hypoglycaemia and 2 year all-cause mortality risk in diabetic patients with acute coronary events. Eur Heart J. 2005;26:1255–61.

    Article  PubMed  Google Scholar 

  77. Eshaghian S, Horwich TB, Fonarow GC. An unexpected inverse relationship between HbA1c levels and mortality in patients with diabetes and advanced systolic heart failure. Am Heart J. 2006;151:91.

    Article  PubMed  Google Scholar 

  78. Kosiborod M, Inzucchi SE, Krumholz HM, Xiao L, Jones PG, Fiske S, et al. Glucometrics in patients hospitalized with acute myocardial infarction: defining the optimal outcomes-based measure of risk. Circulation. 2008;117:1018–27.

    Article  PubMed  CAS  Google Scholar 

  79. Siegelaar SE, Hermanides J, Oudemans-van Straaten HM, van der Voort PH, Bosman RJ, Zandstra DF, et al. Mean glucose during ICU admission is related to mortality by a U-shaped curve in surgical and medical patients: a retrospective cohort study. Crit Care. 2010;14:R224.

    Article  PubMed  Google Scholar 

  80. Egi M, Bellomo R, Stachowski E, French CJ, Hart GK, Hegarty C, et al. Blood glucose concentration and outcome of critical illness: the impact of diabetes. Crit Care Med. 2008;36:2249–55.

    Article  PubMed  CAS  Google Scholar 

  81. Frisch A, Chandra P, Smiley D, Peng L, Rizzo M, Gatcliffe C, et al. Prevalence and clinical outcome of hyperglycemia in the perioperative period in noncardiac surgery. Diabetes Care. 2010;33:1783–8.

    Article  PubMed  CAS  Google Scholar 

  82. Stegenga ME, Vincent JL, Vail GM, Xie J, Haney DJ, Williams MD, et al. Diabetes does not alter mortality or hemostatic and inflammatory responses in patients with severe sepsis. Crit Care Med. 2010;38:539–45.

    Article  PubMed  Google Scholar 

  83. Dahagam CK, Mora A, Wolf SE, Wade CE. Diabetes does not influence selected clinical outcomes in critically ill burn patients. J Burn Care Res. 2011;32:256–62.

    Article  PubMed  Google Scholar 

  84. Egi M, Bellomo R, Stachowski E, French CJ, Hart GK, Taori G, et al. The interaction of chronic and acute glycemia with mortality in critically ill patients with diabetes. Crit Care Med. 2011;39:105–11.

    Article  PubMed  Google Scholar 

  85. Masla M, Gottschalk A, Durieux ME, Groves DS. HbA1c and diabetes predict perioperative hyperglycemia and glycemic variability in on-pump coronary artery bypass graft patients. J Cardiothorac Vasc Anesth. 2011;25:799–803.

    Article  PubMed  CAS  Google Scholar 

  86. Siegelaar SE, Hickmann M, Hoekstra JB, Holleman F, DeVries JH. The effect of diabetes on mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2011;15:R205.

    Article  PubMed  Google Scholar 

  87. Umpierrez GE, Smiley D. Time-dependent glycemic variability and mortality in critically ill patients with diabetes. Crit Care Med. 2011;39:211–3.

    Article  PubMed  Google Scholar 

  88. Lundelin K, Vigil L, Bua S, Gomez-Mestre I, Honrubia T, Varela M. Differences in complexity of glycemic profile in survivors and nonsurvivors in an intensive care unit: a pilot study. Crit Care Med. 2010;38:849–54.

    Article  PubMed  CAS  Google Scholar 

  89. Ogata H, Tokuyama K, Nagasaka S, Ando A, Kusaka I, Sato N, et al. Long-range negative correlation of glucose dynamics in humans and its breakdown in diabetes mellitus. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1638–43.

    Article  PubMed  CAS  Google Scholar 

  90. Ogata H, Tokuyama K, Nagasaka S, Ando A, Kusaka I, Sato N, et al. Long-range correlated glucose fluctuations in diabetes. Methods Inf Med. 2007;46:222–6.

    PubMed  CAS  Google Scholar 

  91. Churruca J, Vigil L, Luna E, Ruiz-Galiana J, Varela M. The route to diabetes: loss of complexity in the glycemic profile from health through the metabolic syndrome to type 2 diabetes. Diabetes Metab Syndr Obes. 2008;1:3–11.

    PubMed  CAS  Google Scholar 

  92. Yamamoto N, Kubo Y, Ishizawa K, Kim G, Moriya T, Yamanouchi T, et al. Detrended fluctuation analysis is considered to be useful as a new indicator for short-term glucose complexity. Diabetes Technol Ther. 2010;12:775–83.

    Article  PubMed  Google Scholar 

  93. Ogata H, Tokuyama K, Nagasaka S, Tsuchita T, Kusaka I, Ishibashi S, et al. The lack of long-range negative correlations in glucose dynamics is associated with worse glucose control in patients with diabetes mellitus. Metabolism. 2012;61:1041–50.

    Article  PubMed  CAS  Google Scholar 

  94. Kovatchev BP, Cox DJ, Gonder-Frederick LA, Clarke W. Symmetrization of the blood glucose measurement scale and its applications. Diabetes Care. 1997;20:1655–8.

    Article  PubMed  CAS  Google Scholar 

  95. Chase JG, LeCompte A, Shaw GM, Blakemore A, Wong J, Lin J, et al. A benchmark data set for model-based glycemic control in critical care. J Diabetes Sci Technol. 2008;2:584–94.

    PubMed  Google Scholar 

  96. Rodbard D. A semilogarithmic scale for glucose provides a balanced view of hyperglycemia and hypoglycemia. J Diabetes Sci Technol. 2009;3:1395–401.

    PubMed  Google Scholar 

  97. McDonald JH. Data transformations. Handbook of biological statistics. 2nd ed. Baltimore: Sparky House Publishing; 2009. p. 160–4.

    Google Scholar 

  98. Sheskin DJ. Handbook of parametric and nonparametric statistical procedures. 5th ed. Boca Raton, FL., USA: Chapman and Hall/CRC; 2011.

Download references

Acknowledgment

The author is indebted to Dr. Geoffrey Chase, University of Canterbury, Centre for Bio-Engineering, Department of Mechanical Engineering, Christchurch, New Zealand, for discussion of logarithmic transformation, reverse transformation, and use of nonparametric tests for analysis of central tendency and variability of BG data.

Disclosure

Conflicts of interest: S.S. Braithwaite: has received honoraria from AACE/Lily/Novo Nordisk; and has received travel/accommodations expenses covered or reimbursed from AACE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan S. Braithwaite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braithwaite, S.S. Glycemic Variability in Hospitalized Patients: Choosing Metrics While Awaiting the Evidence. Curr Diab Rep 13, 138–154 (2013). https://doi.org/10.1007/s11892-012-0345-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0345-9

Keywords

Navigation