Current Diabetes Reports

, Volume 12, Issue 1, pp 16–23 | Cite as

The Placenta and Gestational Diabetes Mellitus

  • M. Gauster
  • G. DesoyeEmail author
  • M. Tötsch
  • U. Hiden
Diabetes and Pregnancy (CJ Homko, Section Editor)


By its location between maternal and fetal bloodstreams the human placenta not only handles the materno-fetal transport of nutrients and gases, but may also be exposed to intrauterine conditions adversely affecting placental and fetal development. Such adverse conditions exist in pregnancies complicated by gestational diabetes mellitus (GDM), and have been associated with alterations in placental anatomy and physiology. These alterations are mainly based on changes on the micro-anatomical and/or even molecular level including aberrant villous vascularization, a disbalance of vasoactive molecules, and enhanced oxidative stress. The consequence thereof may be impaired fetal oxygenation and changes in transplacental nutrient supply. Although transplacental glucose flux is flow limited and independent of glucose transporter availability, transport of essential and nonessential amino acids and expression of genes involved in lipid transport and metabolism are significantly affected by GDM.


Placenta Gestational diabetes mellitus Pregnancy pathology Angiogenesis Placental vascularization Placenta development Placental blood flow Fetal oxygenation Oxidative stress Inflammation Transplacental nutrient supply 



No potential conflicts of interest relevant to this article were reported.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ben-Haroush A, Yogev Y, Hod M. Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabet Med. 2004;21:103–13.PubMedCrossRefGoogle Scholar
  2. 2.
    Radaelli T, Varastehpour A, Catalano P, et al. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes. 2003;52:2951–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Segregur J, Bukovic D, Milinovic D, et al. Fetal macrosomia in pregnant women with gestational diabetes. Coll Antropol. 2009;33:1121–7.PubMedGoogle Scholar
  4. 4.
    Kuhl C, Hornnes PJ, Andersen O. Etiology and pathophysiology of gestational diabetes mellitus. Diabetes. 1985;34 Suppl 2:66–70.PubMedGoogle Scholar
  5. 5.
    Kautzky-Willer A, Prager R, Waldhausl W, et al. Pronounced insulin resistance and inadequate beta-cell secretion characterize lean gestational diabetes during and after pregnancy. Diabetes Care. 1997;20:1717–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Xiang AH, Peters RK, Trigo E, et al. Multiple metabolic defects during late pregnancy in women at high risk for type 2 diabetes. Diabetes. 1999;48:848–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Taricco E, Radaelli T, Rossi G, et al. Effects of gestational diabetes on fetal oxygen and glucose levels in vivo. Bjog. 2009;116:1729–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Daskalakis G, Marinopoulos S, Krielesi V, et al. Placental pathology in women with gestational diabetes. Acta Obstet Gynecol Scand. 2008;87:403–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Madazli R, Tuten A, Calay Z, et al. The incidence of placental abnormalities, maternal and cord plasma malondialdehyde and vascular endothelial growth factor levels in women with gestational diabetes mellitus and nondiabetic controls. Gynecol Obstet Invest. 2008;65:227–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Schafer-Graf UM, Dupak J, Vogel M, et al. Hyperinsulinism, neonatal obesity and placental immaturity in infants born to women with one abnormal glucose tolerance test value. J Perinat Med. 1998;26:27–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Bartha JL, Martinez-Del-Fresno P, Comino-Delgado R. Gestational diabetes mellitus diagnosed during early pregnancy. Am J Obstet Gynecol. 2000;182:346–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Meyer WJ, Carbone J, Gauthier DW, et al. Early gestational glucose screening and gestational diabetes. J Reprod Med. 1996;41:675–9.PubMedGoogle Scholar
  13. 13.
    Cetin I, de Santis MS, Taricco E, et al. Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am J Obstet Gynecol. 2005;192:610–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Taricco E, Radaelli T, Nobile de Santis MS, et al. Foetal and placental weights in relation to maternal characteristics in gestational diabetes. Placenta. 2003;24:343–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Kucuk M, Doymaz F. Placental weight and placental weight-to-birth weight ratio are increased in diet- and exercise-treated gestational diabetes mellitus subjects but not in subjects with one abnormal value on 100-g oral glucose tolerance test. J Diabetes Complications. 2009;23:25–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Lao TT, Lee CP, Wong WM. Placental weight to birthweight ratio is increased in mild gestational glucose intolerance. Placenta. 1997;18:227–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Chan KK, Ho LF, Lao TT. Nutritional intake and placental size in gestational diabetic pregnancies–a preliminary observation. Placenta. 2003;24:985–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Pathak S, Hook E, Hackett G, et al. Cord coiling, umbilical cord insertion and placental shape in an unselected cohort delivering at term: relationship with common obstetric outcomes. Placenta. 2010;31:963–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Calderon IM, Damasceno DC, Amorin RL, et al. Morphometric study of placental villi and vessels in women with mild hyperglycemia or gestational or overt diabetes. Diabetes Res Clin Pract. 2007;78:65–71.PubMedCrossRefGoogle Scholar
  20. 20.
    al-Okail MS, al-Attas OS. Histological changes in placental syncytiotrophoblasts of poorly controlled gestational diabetic patients. Endocr J. 1994;41:355–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Nadra K, Quignodon L, Sardella C, et al. PPARgamma in placental angiogenesis. Endocrinology. 2010;151:4969–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Reynolds LP, Redmer DA. Angiogenesis in the placenta. Biol Reprod. 2001;64:1033–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Khaliq A, Li XF, Shams M, et al. Localisation of placenta growth factor (PIGF) in human term placenta. Growth Factors. 1996;13:243–50. color plates I-II,pre bk cov.PubMedCrossRefGoogle Scholar
  24. 24.
    Lang I, Pabst MA, Hiden U, et al. Heterogeneity of microvascular endothelial cells isolated from human term placenta and macrovascular umbilical vein endothelial cells. Eur J Cell Biol. 2003;82:163–73.PubMedCrossRefGoogle Scholar
  25. 25.
    Murthi P, Hiden U, Rajaraman G, et al. Novel homeobox genes are differentially expressed in placental microvascular endothelial cells compared with macrovascular cells. Placenta. 2008;29:624–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Murthi P, So M, Gude NM, et al. Homeobox genes are differentially expressed in macrovascular human umbilical vein endothelial cells and microvascular placental endothelial cells. Placenta. 2007;28:219–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Grissa O, Yessoufou A, Mrisak I, et al. Growth factor concentrations and their placental mRNA expression are modulated in gestational diabetes mellitus: possible interactions with macrosomia. BMC Pregnancy Childbirth. 2010;10:7.PubMedCrossRefGoogle Scholar
  28. 28.
    Hill DJ, Tevaarwerk GJ, Caddell C, et al. Fibroblast growth factor 2 is elevated in term maternal and cord serum and amniotic fluid in pregnancies complicated by diabetes: relationship to fetal and placental size. J Clin Endocrinol Metab. 1995;80:2626–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Holdsworth-Carson SJ, Lim R, Mitton A, et al. Peroxisome proliferator-activated receptors are altered in pathologies of the human placenta: gestational diabetes mellitus, intrauterine growth restriction and preeclampsia. Placenta. 2010;31:222–9.PubMedCrossRefGoogle Scholar
  30. 30.
    • Acosta JC, Haas DM, Saha CK et al (2011) Gestational diabetes mellitus alters maternal and neonatal circulating endothelial progenitor cell subsets. Am J Obstet Gynecol 204: 254 e258-254 e215. Circulating endothelial progenitor cells are reduced in an intrauterine GDM environment. This may contribute to endothelial dysfunction in placenta and program the offspring for later disease associated with impaired endothelial function.CrossRefGoogle Scholar
  31. 31.
    Estes ML, Mund JA, Mead LE, et al. Application of polychromatic flow cytometry to identify novel subsets of circulating cells with angiogenic potential. Cytometry A. 2010;77:831–9.PubMedGoogle Scholar
  32. 32.
    Jirkovska M, Kubinova L, Janacek J, et al. Topological properties and spatial organization of villous capillaries in normal and diabetic placentas. J Vasc Res. 2002;39:268–78.PubMedCrossRefGoogle Scholar
  33. 33.
    Babawale MO, Lovat S, Mayhew TM, et al. Effects of gestational diabetes on junctional adhesion molecules in human term placental vasculature. Diabetologia. 2000;43:1185–96.PubMedCrossRefGoogle Scholar
  34. 34.
    Fadda GM, D'Antona D, Ambrosini G, et al. Placental and fetal pulsatility indices in gestational diabetes mellitus. J Reprod Med. 2001;46:365–70.PubMedGoogle Scholar
  35. 35.
    Brown MA, North L, Hargood J. Uteroplacental Doppler ultrasound in routine antenatal care. Aust N Z J Obstet Gynaecol. 1990;30:303–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Pietryga M, Brazert J, Wender-Ozegowska E, et al. Placental Doppler velocimetry in gestational diabetes mellitus. J Perinat Med. 2006;34:108–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Reisenberger K, Egarter C, Kapiotis S, et al. Transfer of erythropoietin across the placenta perfused in vitro. Obstet Gynecol. 1997;89:738–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Leushner JR, Tevaarwerk GJ, Clarson CL, et al. Analysis of the collagens of diabetic placental villi. Cell Mol Biol. 1986;32:27–35.PubMedGoogle Scholar
  39. 39.
    Stanley JL, Cheung CC, Rueda-Clausen CF, et al. Effect of gestational diabetes on maternal artery function. Reprod Sci. 2011;18:342–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Bobadilla RA, van Bree R, Vercruysse L, et al. Placental effects of systemic tumour necrosis factor-alpha in an animal model of gestational diabetes mellitus. Placenta. 2010;31:1057–63.PubMedCrossRefGoogle Scholar
  41. 41.
    Mildenberger E, Biesel B, Siegel G, et al. Nitric oxide and endothelin in oxygen-dependent regulation of vascular tone of human umbilical vein. Am J Physiol Heart Circ Physiol. 2003;285:H1730–7.PubMedGoogle Scholar
  42. 42.
    Boura AL, Walters WA, Read MA, et al. Autacoids and control of human placental blood flow. Clin Exp Pharmacol Physiol. 1994;21:737–48.PubMedCrossRefGoogle Scholar
  43. 43.
    San Martin R, Sobrevia L. Gestational diabetes and the adenosine/L-arginine/nitric oxide (ALANO) pathway in human umbilical vein endothelium. Placenta. 2006;27:1–10.PubMedCrossRefGoogle Scholar
  44. 44.
    Schonfelder G, John M, Hopp H, et al. Expression of inducible nitric oxide synthase in placenta of women with gestational diabetes. Faseb J. 1996;10:777–84.PubMedGoogle Scholar
  45. 45.
    Figueroa R, Martinez E, Fayngersh RP, et al. Alterations in relaxation to lactate and H(2)O(2) in human placental vessels from gestational diabetic pregnancies. Am J Physiol Heart Circ Physiol. 2000;278:H706–13.PubMedGoogle Scholar
  46. 46.
    Sobrevia L, Cesare P, Yudilevich DL, et al. Diabetes-induced activation of system y + and nitric oxide synthase in human endothelial cells: association with membrane hyperpolarization. J Physiol. 1995;489(Pt 1):183–92.PubMedGoogle Scholar
  47. 47.
    Sobrevia L, Yudilevich DL, Mann GE. Elevated D-glucose induces insulin insensitivity in human umbilical endothelial cells isolated from gestational diabetic pregnancies. J Physiol. 1998;506(Pt 1):219–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Vasquez G, Sanhueza F, Vasquez R, et al. Role of adenosine transport in gestational diabetes-induced L-arginine transport and nitric oxide synthesis in human umbilical vein endothelium. J Physiol. 2004;560:111–22.PubMedCrossRefGoogle Scholar
  49. 49.
    De Vriese AS, Verbeuren TJ, Van de Voorde J, et al. Endothelial dysfunction in diabetes. Br J Pharmacol. 2000;130:963–74.PubMedCrossRefGoogle Scholar
  50. 50.
    Tooke JE, Goh KL. Endotheliopathy precedes type 2 diabetes. Diabetes Care. 1998;21:2047–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Sobrevia L, Mann GE. Dysfunction of the endothelial nitric oxide signalling pathway in diabetes and hyperglycaemia. Exp Physiol. 1997;82:423–52.PubMedGoogle Scholar
  52. 52.
    • Sobrevia L, Gonzalez M (2009) A role for insulin on L-arginine transport in fetal endothelial dysfunction in hyperglycaemia. Curr Vasc Pharmacol 7: 467–474. Insulin blocks the stimulatory high-glucose effect on L-arginine transport by reducing transcriptional activity of the amino acid transporter through transcription factors specificity protein 1 and nuclear factor-κB. This may contribute to fetal endothelial dysfunction in diabetic pregnancies.PubMedCrossRefGoogle Scholar
  53. 53.
    •• Lappas M, Hiden U, Froehlich J et al (2011) The Role of Oxidative Stress in the Pathophysiology of Gestational Diabetes Mellitus. Antioxid Redox Signal. This is a comprehensive review on pathogenesis of gestational diabetes and the oxidative and nitrative processes occurring in the placenta in this pathology.Google Scholar
  54. 54.
    Coughlan MT, Vervaart PP, Permezel M, et al. Altered placental oxidative stress status in gestational diabetes mellitus. Placenta. 2004;25:78–84.PubMedCrossRefGoogle Scholar
  55. 55.
    Kwek K, Read MA, Khong TY, et al. Vasoactive effects of 8-epi-prostaglandin F(2alpha)in isolated human placental conduit and resistance blood vessels in vitro. Placenta. 2001;22:526–33.PubMedCrossRefGoogle Scholar
  56. 56.
    Lappas M, Mitton A, Permezel M. In response to oxidative stress, the expression of inflammatory cytokines and antioxidant enzymes are impaired in placenta, but not adipose tissue, of women with gestational diabetes. J Endocrinol. 2010;204:75–84.PubMedCrossRefGoogle Scholar
  57. 57.
    Singh U, Devaraj S, Jialal I. Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr. 2005;25:151–74.PubMedCrossRefGoogle Scholar
  58. 58.
    Bowen JM, Chamley L, Mitchell MD, et al. Cytokines of the placenta and extra-placental membranes: biosynthesis, secretion and roles in establishment of pregnancy in women. Placenta. 2002;23:239–56.PubMedCrossRefGoogle Scholar
  59. 59.
    Marseille-Tremblay C, Ethier-Chiasson M, Forest JC, et al. Impact of maternal circulating cholesterol and gestational diabetes mellitus on lipid metabolism in human term placenta. Mol Reprod Dev. 2008;75:1054–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Coughlan MT, Oliva K, Georgiou HM, et al. Glucose-induced release of tumour necrosis factor-alpha from human placental and adipose tissues in gestational diabetes mellitus. Diabet Med. 2001;18:921–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Challier JC, Basu S, Bintein T, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008;29:274–81.PubMedCrossRefGoogle Scholar
  62. 62.
    Lager S, Jansson N, Olsson AL, et al. Effect of IL-6 and TNF-alpha on fatty acid uptake in cultured human primary trophoblast cells. Placenta. 2011;32:121–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Magnusson AL, Waterman IJ, Wennergren M, et al. Triglyceride hydrolase activities and expression of fatty acid binding proteins in the human placenta in pregnancies complicated by intrauterine growth restriction and diabetes. J Clin Endocrinol Metab. 2004;89:4607–14.PubMedCrossRefGoogle Scholar
  64. 64.
    • Gauster M, Hiden U, vanPoppel M et al (2011) Dysregulation of placental endothelial lipase in obese women with gestational diabetes mellitus. Diabetes in press. This demonstrates that neither GDM nor obesity alone but only their combination induces changes in a placental key lipase.Google Scholar
  65. 65.
    Gauster M, Hiden U, Blaschitz A, et al. Dysregulation of placental endothelial lipase and lipoprotein lipase in intrauterine growth-restricted pregnancies. J Clin Endocrinol Metab. 2007;92:2256–63.PubMedCrossRefGoogle Scholar
  66. 66.
    Varastehpour A, Radaelli T, Minium J, et al. Activation of phospholipase A2 is associated with generation of placental lipid signals and fetal obesity. J Clin Endocrinol Metab. 2006;91:248–55.PubMedCrossRefGoogle Scholar
  67. 67.
    •• Radaelli T, Lepercq J, Varastehpour A et al (2009) Differential regulation of genes for fetoplacental lipid pathways in pregnancy with gestational and type 1 diabetes mellitus. Am J Obstet Gynecol 201: 209 e201-209 e210. This demonstrates that GDM is a distinct diabetic entity in its effects on the placenta.CrossRefGoogle Scholar
  68. 68.
    Jansson T, Ekstrand Y, Bjorn C, et al. Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes. 2002;51:2214–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Kuruvilla AG, D'Souza SW, Glazier JD, et al. Altered activity of the system A amino acid transporter in microvillous membrane vesicles from placentas of macrosomic babies born to diabetic women. J Clin Invest. 1994;94:689–95.PubMedCrossRefGoogle Scholar
  70. 70.
    Kalhan S, Parimi P. Gluconeogenesis in the fetus and neonate. Semin Perinatol. 2000;24:94–106.PubMedCrossRefGoogle Scholar
  71. 71.
    Hahn T, Barth S, Weiss U, et al. Sustained hyperglycemia in vitro down-regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? Faseb J. 1998;12:1221–31.PubMedGoogle Scholar
  72. 72.
    Illsley NP, Hall S, Stacey TE. The modulation of glucose transfer across the human placenta by intervillous flow rates: An in vitro perfusion study. Troph Res. 1987;2:535–44.Google Scholar
  73. 73.
    Osmond DT, King RG, Brennecke SP, et al. Placental glucose transport and utilisation is altered at term in insulin-treated, gestational-diabetic patients. Diabetologia. 2001;44:1133–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Osmond DT, Nolan CJ, King RG, et al. Effects of gestational diabetes on human placental glucose uptake, transfer, and utilisation. Diabetologia. 2000;43:576–82.PubMedCrossRefGoogle Scholar
  75. 75.
    • Colomiere M, Permezel M, Riley C et al (2009) Defective insulin signaling in placenta from pregnancies complicated by gestational diabetes mellitus. Eur J Endocrinol 160: 567–578. This compares the effects of GDM with and without obesity on insulin signaling in the placenta and shows varying effects, thus demonstrating the complexity of GDM-associated changes.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Cell Biology, Histology and Embryology, Center for Molecular MedicineMedical University of GrazGrazAustria
  2. 2.Department of Obstetrics and GynecologyMedical University of GrazGrazAustria
  3. 3.Cytological InstituteMedical University of GrazGrazAustria

Personalised recommendations