Skip to main content

Advertisement

Log in

The Goal of Blood Pressure Control for Prevention of Early Diabetic Microvascular Complications

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Lowering blood pressure may confer a benefit to diabetic microvascular complications comparable with glycemic control. Hypertension is causally related to kidney outcomes and is a risk factor for the development of diabetic retinopathy. The prevalence of hypertension increases as kidney disease progresses, so that it coexists with diabetes in up to 80% of those with overt nephropathy. A significant number of patients have hypertension or rising blood pressures in earlier stages, or even before microvascular complications appear. Because microalbuminuria markedly increases the risk of overt nephropathy as well as of cardiovascular complications, primary prevention (i.e., preventing or delaying the onset of microalbuminuria) continues to be explored, predominantly through use of renin-angiotensin blockade. Available data reviewed suggest that primary prevention through blood pressure reduction is more likely to benefit select groups (those with hypertension, cardiovascular risks, or old age). This review discusses the relationship between hypertension, diabetes, and kidney disease, the rationale for primary prevention, and the data that led to that conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ACCORD:

Action to Control Cardiovascular Risk in Diabetes

BENEDICT:

Bergamo Nephrologic Diabetes Complication Trial

DIRECT:

Diabetic Retinopathy Candesartan Trials

EUCLID:

EURODIAB Controlled Trial of Lisinopril in Insulin-Dependent Diabetes

KDOQI:

Kidney Disease Outcomes Quality Initiative

NHANES III:

Third National Health and Nutrition Examination Survey

RASS:

Renin Angiotensin System Study

ROADMAP:

Randomized Olmesartan and Diabetes Microalbuminuria Prevention

UKPDS:

United Kingdom Prospective Diabetes Study

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. World Health Organization: Diabetes fact sheet N°312. Available at http://www.who.int/mediacentre/factsheets/fs312/en/index.html. Accessed April 6, 2011.

  2. Gross ML, Dikow R, Ritz E. Diabetic nephropathy: recent insights into the pathophysioology and the progression of diabetic nephropathy. Kidney Int. 2005;67 Suppl 94:S50–3.

    Article  Google Scholar 

  3. Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension. 2001;37:1053–59.

    PubMed  CAS  Google Scholar 

  4. Bakris GL, Williams M, Dworkin L, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000;36:646–61.

    Article  PubMed  CAS  Google Scholar 

  5. Karalliedde J, Viberti G. Proteinuria in diabetes: bystander or pathway to cardiorenal disease? J Am Soc Nephrol. 2010;21:2020–7.

    Article  PubMed  CAS  Google Scholar 

  6. Gnudi L, Thomas SM, Viberti G. Mechanical forces in diabetic kidney disease: a trigger for impaired glucose metabolism. J Am Soc Nephrol. 2007;1:2226–32.

    Article  Google Scholar 

  7. Haneda M, Kikkawa R, Togawa M, et al. High blood pressure is a risk factor for the development of microalbuminuria in Japanese subjects with non-insulin-dependent diabetes mellitus. J Diabetes Complications. 1992;6:181–5.

    Article  PubMed  CAS  Google Scholar 

  8. Ruggenenti P, Perna A, Ganeva M, et al. BENEDICT study group: Impact of blood pressure and angiotensin-converting enzyme inhibitor therapy on new-onset microalbuminuria in type 2 diabetes: a post-hoc analysis of the BENEDICT trial. J Am Soc Nephrol. 2006;17:3472–81.

    Article  PubMed  CAS  Google Scholar 

  9. Lewis JB, Berl T, Bain RP, et al. Effect of intensive blood pressure control on the course of type 1 diabetic nephropathy. Am J Kidney Dis. 1999;34:809–17.

    Article  PubMed  CAS  Google Scholar 

  10. Pohl MA, Blumenthal S, Cordonnier DJ, et al. Independent and additive impact of blood pressure control and angiotensin II receptor blockade on renal outcomes in the irbesartan diabetic nephropathy trial: clinical implications and limitations. J Am Soc Nephrol. 2005;16:3027–37.

    Article  PubMed  CAS  Google Scholar 

  11. Rossing P, Parving HH, de Zeeuw D. Renoprotection by blocking the RAAS in diabetic nephropathy—fact or fiction? Nephrol Dial Transplant. 2006;21:2354–7.

    Article  PubMed  Google Scholar 

  12. • Ruggenenti P, Cravedi P,Remuzzi G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nature Rev/Nephr. 2010;6: 319–30. This is a scholarly report documenting the importance of the renin-angiotensin-aldosterone system pathway in diabetic kidney disease; review includes major clinical trials for prevention of microalbuminuria.

    Article  CAS  Google Scholar 

  13. Srivastava BK, Rema M. Does hypertension play a role in diabetic retinopathy? JAPI. 2005;53:803–8.

    PubMed  CAS  Google Scholar 

  14. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes. BMJ. 1998;317:703–13.

    Google Scholar 

  15. McGill J. Improving microvascular outcomes in patients with diabetes through management of hypertension. Postgrad Med. 2009;121:89–101.

    Article  PubMed  Google Scholar 

  16. Norgaard K, Feldt-Rasmussen B, Johnsen K, et al. Prevalence of hypertension in type 1 (insulin dependent) diabetes mellitus. Diabetologia. 1990;33:407–10.

    Article  PubMed  CAS  Google Scholar 

  17. Parving H-H, Hommel E, Mathiesen E, et al. Prevalence of microalbuminuria, arterial hypertension, retinopathy, and neuropathy in patients with insulin-dependent diabetes. Br Med J. 1988;296:156–60.

    Article  CAS  Google Scholar 

  18. Mogensen CE. Predicting diabetic nephropathy in insulin-dependent patients. New Eng J Med. 1984;311:89–93.

    Article  PubMed  CAS  Google Scholar 

  19. Bohm M, Thoenes M, Danchin N, et al. Association of cardiovascular risk factors with microalbuminuria in hypertensive individuals: the i-SEARCH global study. J Hypertension. 2007;25:2317–24.

    Article  Google Scholar 

  20. Haller H, Viberti GC, Mimran A, et al. Preventing microalbuminuria in patients with diabetes: rationale and design of the Randomized Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) study. J Hypertension. 2006;24:403–8.

    Article  CAS  Google Scholar 

  21. Lurge E, Redon J, Kesani A, et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002;347:797–805.

    Article  Google Scholar 

  22. Brenner BM (Ed.) Brenner and Rector’s The Kidney (W.B.Saunders, Philadelphia, 2008).

  23. Gerstein HC, Mann JFE, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286:421–6.

    Article  PubMed  CAS  Google Scholar 

  24. Gall M-A, Hougaard P, Borch-Johnsen K, et al. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: prospective, observational study. Brit Med J. 1997;314:783–8.

    PubMed  CAS  Google Scholar 

  25. Vergouwe Y, Soedamah-Muthu SS, Zgibor J, et al. Progression to microalbuminuria in type 1 diabetes: Development and validation of a prediction rule. Diabetologia. 2009;53:254–62.

    Article  PubMed  Google Scholar 

  26. Najafian B, Mauer M. Progression of diabetic nephropathy in type 1 diabetic patients. Diabetes Research Clinical Practice. 2009;83:1–8.

    Article  CAS  Google Scholar 

  27. Perkins BA, Ficociello LH, Ostrander BE, et al. Microalbuminuria and the risk for early progressive function decline in type 1 diabeters. J Am Soc Nephrol. 2007;18:1353–61.

    Article  PubMed  CAS  Google Scholar 

  28. Murussi M, Gross JL, Silviero SP. Glomerular filtration rate changes in normoalbuminuric and microalbuminuric type 2 diabetic patients and normal individuals.

  29. Vaidya VS, Niewczas MA, Ficociello LH, et al. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-B-D-glucosaminidasse. Kidney Int. 2011;79:464–70.

    Article  PubMed  CAS  Google Scholar 

  30. Atta MG, Baptiste-Roberts K, Brancati FL, et al. The natural course of microalbuminuria among African Americans with type 2 diabetes: a 3-year study. Am J Med. 2009;122:62–72.

    Article  PubMed  CAS  Google Scholar 

  31. Patrick AW, Leslie PJ, Clarke BF, et al. The natural history and associations of microalbuminuria in type 2 diabetes during the first year after diagnosis. Diabet Med. 1990;7:902–8.

    Article  PubMed  CAS  Google Scholar 

  32. Ficociello LH, Perkins BA, Roshan B, et al. Renal hyperfiltration and the development of microalbuminuria in type 1 diabetes. Diabetes Care. 2009;32:889–93.

    Article  PubMed  CAS  Google Scholar 

  33. Poulsen PL, Hansen KW, Mogensen CE. Ambulatory blood pressure in the transition from normo- to microalbuminuria. A longitudinal study in IDDM patients. Diabetes. 1994;43:1248–53.

    Article  PubMed  CAS  Google Scholar 

  34. Ito H, Takeuchi Y, Ishida H, et al. High frequencies of diabetic micro- and macroangiopathies with type 2 diabetes mellitus with decreased estimated glomerular filtration rate and normoalbuminuria. Nephr Dial Transplant November 5, 2009 (epub ahead of print)

  35. Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 1981;19:410–5.

    Article  PubMed  CAS  Google Scholar 

  36. Wolf G, Ziyadeh F. Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol. 2007;106:26–31.

    Article  Google Scholar 

  37. Silva KC, Pinto CC, Biswas SK, et al. Hypertension increases retinal inflammation in experimental diabetes: a possible mechanism for aggravation of diabetic retinopathy by hypertension. Curr Eye Res. 2007;32:533–41.

    Article  PubMed  CAS  Google Scholar 

  38. • Van Buren PN, Toto R. Hypertension in diabetic nephropathy: epidemiology, mechanisms, and management. Adv Chr Kidney Dis 2011;18: 28–41. This is a thorough review of hypertension in diabetes, including epidemiology, mechanisms, and management, with a review of recent clinical trials that form the basis of clinical treatment guidelines.

    Article  Google Scholar 

  39. • Nelson RG, Tuttle KR. Prevention of diabetic kidney disease: negative clinical trials with renin-angiotensin system inhibitors. Am J Kid Disease 2010;55: 426–30. This is a critique of important recent clinical trials on CKD prevention by two prominent experts on diabetic kidney disease.

    Article  Google Scholar 

  40. Chobanian AV. Shattuck lecture. The hypertension paradox-more uncontrolled disease despite improved therapy. N Engl J Med. 2009;361:878–87.

    Article  PubMed  CAS  Google Scholar 

  41. Chobanian A, Bakris GL, Black HR, et al. The seventh joint national committee report on prevention, detection, and treatment of high blood pressure. JAMA. 2003;289:2560–72.

    Article  PubMed  CAS  Google Scholar 

  42. ACCORD Study Group. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    Article  Google Scholar 

  43. Kalaitzidis R, Bakris GL. Lower blood pressure goals for cardiovascular and renal risk reduction: are they defensible? J Clin Hypertens. 2009;11:345–7.

    Article  Google Scholar 

  44. American Diabetes Association. Clinical practice recommendations 2009. Diabetes Care. 2009;32 Suppl 1:S1–S98.

    Google Scholar 

  45. Perkins BA, Aiello LP, Krolewskik AS. Diabetes complications and the renin-angiotensin system. New Engl J Med. 2009;361:83–5.

    Article  PubMed  CAS  Google Scholar 

  46. Euclid Study Group. Randomised placebo-controlled trial of lisinopril in mormotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. Lancet. 1997;349:1787–92.

    Article  Google Scholar 

  47. Ruggenenti P, Fassi A, Ilieva AP, et al. Preventing microalbumiuria in type 2 diabetes. New Eng J Med. 2004;351:1941–51.

    Article  PubMed  CAS  Google Scholar 

  48. Ruggenenti P, Perna A, Ganeva M, et al. BENEDICT Study Group: Impact of blood pressure and angiotensin-converting enzyme inhibitor therapy on new-onset microalbuminuria in type 2 diabetes: a post-hoc analysis of the BENEDICT trial. J Am Soc Nephrol. 2006;17:3472–81.

    Article  PubMed  CAS  Google Scholar 

  49. Mauer M, Zinman B, Gardiner R, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009;361:40–51.

    Article  PubMed  CAS  Google Scholar 

  50. Strippoli GF, Craig M, Navaneethan SD, et al. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev 2006; CD0006257

  51. Bilous R, Chaturvedi N, Sjolie AK, et al. Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann Intern Med. 2009;151:11–20.

    PubMed  Google Scholar 

  52. Haller H, Ito S, Izzo Jr JR, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Eng J Med. 2011;364:907–17.

    Article  CAS  Google Scholar 

  53. Levey AS, Cattran D, Friedman A, et al. Proteinuria as a surrogate outcome in CKD: report of a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am J Kidney Dis. 2009;54:205–26.

    Article  PubMed  Google Scholar 

  54. Ong KL, Cheung BMY, Man YB, et al. Prevalence, awareness, treatment, and control of hypertension among United States adults, 1999–2004. Hypertension. 2007;49:69–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, M.E. The Goal of Blood Pressure Control for Prevention of Early Diabetic Microvascular Complications. Curr Diab Rep 11, 323–329 (2011). https://doi.org/10.1007/s11892-011-0193-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-011-0193-z

Keywords

Navigation