Genes and type 2 diabetes mellitus

Article

Abstract

In 2007, five whole genome-wide association studies were published on the genetics of type 2 diabetes mellitus (T2DM), followed by the discovery of 11 genes consistently associated with T2DM. This breakthrough provided the first glimpses of a complete picture of the disease’s genetic complexity. Currently, we are only beginning to understand how DNA methylation, histone acetylation, and deacetylation may introduce epigenetic changes throughout one’s lifetime. Such changes may influence age-related modifications in gene-expression that contribute to age-related diseases. In the future, the possibility of whole-genome DNA methylation studies may elucidate the extent of these epigenetic effects. This article reviews genes that have recently been determined to be associated with T2DM.

References and Recommended Reading

  1. 1.
    Newman B, Selby JV, King MC, et al.: Concordance for type 2 diabetes in male twins. Diabetologia 1987, 30:763–768.PubMedCrossRefGoogle Scholar
  2. 2.
    Kaprio J, Tuomilehto J, Koskenvuo M, et al.: Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 1992, 35:1060–1067.PubMedCrossRefGoogle Scholar
  3. 3.
    Köbberling J, Tillil H: Empirical risk figures for first-degree relatives of non-insulin dependent diabetics. In The Genetics of Diabetes Mellitus. Edited by Köbberling J, Tattersall R. London: Academic Press; 1982:201–209.Google Scholar
  4. 4.
    Groop L, Forsblom C, Lehtovirta M, et al.: Metabolic consequences of a family history of NIDDM (the Botnia Study): evidence for sex-specific parental effects. Diabetes 1996, 45:1585–1593.PubMedCrossRefGoogle Scholar
  5. 5.
    Lyssenko V, Almgren P, Anevski D, et al.: Predictors and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. Diabetes 2005, 54:166–174.PubMedCrossRefGoogle Scholar
  6. 6.
    Serjeantson S, Owerbach D, Zimmet P, et al.: Genetics of diabetes in Nauru. Effects of foreign admixture, HLA antigens and insulin-gene linked polymorphism. Diabetologia 1983, 25:13–17.PubMedCrossRefGoogle Scholar
  7. 7.
    Brosseau J, Eelkema R, Crawford A, Abe T: Diabetes among the three affiliated tribes: correlations with degree of Indian inheritance. Am J Publ Health 1979, 69:1277–1278.CrossRefGoogle Scholar
  8. 8.
    Enattah NS, Jensen TG, Nielsen M, et al.: Independent introduction of two lactase-persistence alleles into human populations reflects different history of adaptation to milk culture. Am J Hum Genet 2008, 82:57–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Neel V: Diabetes mellitus: a “thrifty” genotype rendered detrimental by progress? Am J Hum Genet 1962, 14:352–622.Google Scholar
  10. 10.
    Coleman D: Obesity genes: beneficial effects in heterozygous mice. Science 1979, 203:663–665.PubMedCrossRefGoogle Scholar
  11. 11.
    Hales C, Barker D: Type 2 diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992, 35:595–601.PubMedCrossRefGoogle Scholar
  12. 12.
    Melander O, Mattiasson I, Marsal K, et al.: Heredity for hypertension influences intrauterine growth and the relation between foetal growth and adult blood pressure. J Hypertens 1999, 17:1557–1561.PubMedCrossRefGoogle Scholar
  13. 13.
    Hattersley A, Beards F, Ballantyne E, et al.: Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 1998, 19:268–270.PubMedCrossRefGoogle Scholar
  14. 14.
    Laaksonen DE, Lakka HM, Niskanen LK, et al.: Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort. Am J Epidemiol 2002, 156:1070–1077.PubMedCrossRefGoogle Scholar
  15. 15.
    Lorenzo C, Okolosie M, Williams K, et al.: The metabolic syndrome as a predictor of type 2 diabetes: the San Antonio Heart Study. Diabetes Care 2003, 26:3153–3159.PubMedCrossRefGoogle Scholar
  16. 16.
    Tirosh A, Shai I, Tekes-Manova D, et al.: Normal fasting plasma glucose levels and type 2 diabetes in young men. N Engl J Med 2005, 353:1454–1462.PubMedCrossRefGoogle Scholar
  17. 17.
    Hanis CL, Boerwinkle E, Chakraborty R, et al.: A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet 1996, 13:161–166.PubMedCrossRefGoogle Scholar
  18. 18.
    Horikawa Y, Oda N, Cox NJ, et al.: Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000, 26:163–175.PubMedCrossRefGoogle Scholar
  19. 19.
    Parikh H, Groop L: Candidate genes for type 2 diabetes. Rev Endocr Metab Disord 2004, 5:151–176.PubMedCrossRefGoogle Scholar
  20. 20.
    Carlsson E, Poulsen P, Storgaard H, et al.: Genetic and non-genetic regulation of CAPN10 mRNA expression skeletal muscle. Diabetes 2005, 54:3015–3020.PubMedCrossRefGoogle Scholar
  21. 21.
    Deeb SS, Fajas L, Nemoto M, et al.: A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998, 20:284–287.PubMedCrossRefGoogle Scholar
  22. 22.
    Altshuler D, Hirschhorn JN, Klannemark M, et al.: The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000, 26:76–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Lyssenko V, Anevski D, Almgren P, et al.: Genetic prediction of type 2 diabetes. PloS Med 2005, 2:1299–1308.CrossRefGoogle Scholar
  24. 24.
    Gloyn AL, Weedon MN, Owen KR, et al.: Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunit Kir 6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCJN11 W23K variant is associated with type 2 diabetes. Diabetes 2003, 52:568–572.PubMedCrossRefGoogle Scholar
  25. 25.
    Florez JC, Burtt N, de Bakker PIW, et al.: Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor (SUR1) and the islet ATP-sensitive potassium channel (kir 6.2) gene region. Diabetes 2004, 53:1360–1368.PubMedCrossRefGoogle Scholar
  26. 26.
    Gloyn AL, Pearson ER, Antcliff JF, et al.: Activating mutations in the gene encoding the ATP-sensitive potassium channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004, 350:1838–1849.PubMedCrossRefGoogle Scholar
  27. 27.
    Nichols CG, Koster JC: Diabetes and insulin secretion: whither KATP? Am J Physiol Endocrinol Metab 2002, 283:E403–E412.PubMedGoogle Scholar
  28. 28.
    Grant SF, Thorleifsson G, Reynisdottir I, et al.: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006, 38:320–323.PubMedCrossRefGoogle Scholar
  29. 29.
    Lyssenko V, Orho-Melander M, Sjögren M, et al.: Common variants in the TCF7L2 gene increase risk of future type 2 diabetes by influencing pancreatic alpha and beta-cell function. J Clin Invest 2007, 117:2155–2163.PubMedCrossRefGoogle Scholar
  30. 30.
    Sandhu MS, Weedon MN, Fawcett KA, et al.: Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 2007, 39:951–953.PubMedCrossRefGoogle Scholar
  31. 31.
    Sladek R, Rochelau G, Rung J, et al.: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445:881–885.PubMedCrossRefGoogle Scholar
  32. 32.
    Diabetes Genetics Initiative, Saxena R, Voigt B, et al.: Genome wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316:1331–1336.PubMedCrossRefGoogle Scholar
  33. 33.
    Zeggini E, Weedon MN, Lindgren CM, et al.: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007, 316:1336–1440.PubMedCrossRefGoogle Scholar
  34. 34.
    Scott L, Mohlke K, Bonnycastle LL, et al.: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007, 316:1341–1345.PubMedCrossRefGoogle Scholar
  35. 35.
    Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al.: A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 2007, 39:770–775.PubMedCrossRefGoogle Scholar
  36. 36.
    McPherson R, Pertsemilidis A, Kavaslar N, et al.: A common allele on chromosome 9 associated with coronary heart disease. Science 2007, 316:14888–14891.CrossRefGoogle Scholar
  37. 37.
    Helgadottir A, Thorleifsson G, Manolesco A, et al.: A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 2007, 316:1491–1493.PubMedCrossRefGoogle Scholar
  38. 38.
    The Wellcome Trust Case Control Consortium: Genomewide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661–678.CrossRefGoogle Scholar
  39. 39.
    Frayling T, Timpson Nj, Weedon MN, et al.: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007, 316:889–894.PubMedCrossRefGoogle Scholar
  40. 40.
    Dina C, Meyre D, Gallina S, et al.: Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 2007, 39:724–726.PubMedCrossRefGoogle Scholar
  41. 41.
    Gerken T, Girard CA, Tung YC, et al.: The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 2007, 318:1467–1472.CrossRefGoogle Scholar
  42. 42.
    Zeggini E, Scott LJ, Saxena R, et al.: Meta-analysis of genome-wide association data and large-scale replication identifies several additional susceptibility loci for type 2 diabetes. Nat Genet 2008 Mar 30 (Epub ahead of print).Google Scholar
  43. 43.
    Loos RJF, Lindgren CM, Li S, et al.: Association studies involving over 85,000 samples demonstrate that common variants near to MC4R influence fat mass, weight and risk of obesity. Nat Genet 2008 (in press).Google Scholar
  44. 44.
    Kathiresan, S, Melander O, Guiducci C, et al.: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 2008, 40:189–197.PubMedCrossRefGoogle Scholar
  45. 45.
    Kathiresan S, Melander O, Roos C, et al.: A panel of validated lipid polymorphisms and risk of first cardiovascular disease event. N Engl J Med 2008 (in press).Google Scholar
  46. 46.
    Sebat J, Lakshmi B, Troge J, et al.: Large-scale copy number polymorphism in the human genome. Science 2004, 305:525–528.PubMedCrossRefGoogle Scholar
  47. 47.
    Beckman JS, Estivill X, Antonarakis SE: Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 2007, 8:639–646.CrossRefGoogle Scholar
  48. 48.
    Ling C, Poulsen P, Simonsson S, et al.: Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. J Clin Invest 2007, 117:3427–3435.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  1. 1.Department of Clinical Sciences/Diabetes & EndocrinologyLund University, University Hospital MalmoeMalmoeSweden

Personalised recommendations