Skip to main content

Advertisement

Log in

Examining diabetic nephropathy through the lens of mouse genetics

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Although diabetic nephropathy occurs in only a minority of patients with diabetes, it is the major cause of end-stage renal disease in the United States. Hyperglycemia and hypertension are important factors predisposing patients to diabetic nephropathy, but accumulating evidence points to critical genetic factors predisposing only a subset of patients with diabetes to nephropathy. It has been challenging to define the genes conferring risk for nephropathy in human populations. Comparative genomics using the robust genetic reagents available in laboratory mice should provide a complementary approach to defining genes that may predispose to diabetic nephropathy in mice and humans. This article reviews new studies to identify genetic risk factors for diabetic nephropathy and the unique approaches that may be used to elucidate the genetic pathogenesis of this disorder in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Parving HH: Initiation and progression of diabetic nephropathy. N Engl J Med 1996, 335:1682–1683.

    Article  PubMed  CAS  Google Scholar 

  2. US Renal Data System: Excerpts from the USRDS 2005 annual data report. Am J Kidney Dis 2005, 47:S1–S286.

    Google Scholar 

  3. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group [no authors listed]. N Engl J Med 2000, 342:381–389.

  4. Krolewski M, Eggers PW, Warram JH: Magnitude of end-stage renal disease in IDDM: a 35 year follow-up study. Kidney Int 1996, 50:2041–2046.

    Article  PubMed  CAS  Google Scholar 

  5. Knowler WC, Coresh J, Elston RC, et al.: The Family Investigation of Nephropathy and Diabetes (FIND): design and methods. J Diabetes Complications 2005, 19:1–9.

    Article  PubMed  Google Scholar 

  6. Seaquist ER, Goetz FC, Rich S, Barbosa J: Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 1989, 320:1161–1165.

    Article  PubMed  CAS  Google Scholar 

  7. Iyengar SK, Abboud HE, Goddard KAB, et al.: Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: the Family Investigation of Nephropathy and Diabetes. Diabetes 2007, 56:1577–1585.

    Article  PubMed  CAS  Google Scholar 

  8. Chavers BM, Bilous RW, Ellis EN, et al.: Glomerular lesions and urinary albumin excretion in type I diabetes without overt proteinuria. N Engl J Med 1989, 320:966–970.

    Article  PubMed  CAS  Google Scholar 

  9. Breyer MD, Bottinger E, Brosius FC 3rd, et al.: Mouse models of diabetic nephropathy. J Am Soc Nephrol 2005, 16:27–45.

    Article  PubMed  Google Scholar 

  10. Beck JA, Lloyd S, Hafezparast M, et al.: Genealogies of mouse inbred strains. Nat Genet 2000, 24:23–25.

    Article  PubMed  CAS  Google Scholar 

  11. Wade CM, Daly MJ: Genetic variation in laboratory mice. Nat Genet 2005, 37:1175–1180.

    Article  PubMed  CAS  Google Scholar 

  12. Yang H, Bell TA, Churchill GA, Pardo-Manuel de Villena F: On the subspecific origin of the laboratory mouse. Nat Genet 2007, 39:1100–1107.

    Article  PubMed  CAS  Google Scholar 

  13. Gurley SB, Clare SE, Snow KP, et al.: Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol 2006, 290:214–222.

    Article  CAS  Google Scholar 

  14. Qi Z, Fujita H, Jin J, et al.: Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes 2005, 54:2628–2637.

    Article  PubMed  CAS  Google Scholar 

  15. Ma LJ, Fogo AB: Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int 2003, 64:350–355.

    Article  PubMed  Google Scholar 

  16. Qi Z, Whitt I, Mehta A, et al.: Serial determination of glomerular filtration rate in conscious mice using FITC-insulin clearance. Am J Physiol Renal Physiol 2004, 286:F590–F596.

    Article  PubMed  CAS  Google Scholar 

  17. Mathews CE, Langley SH, Leiter EH: New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation 2002, 73:1333–1336.

    Article  PubMed  CAS  Google Scholar 

  18. Festing MF, Simpson EM, Davisson MT, Mobraaten LE: Revised nomenclature for strain 129 mice. Mamm Genome 1999, 10:836.

    Article  PubMed  CAS  Google Scholar 

  19. Hartner A, Cordasic N, Klanke B, et al.: Strain differences in the development of hypertension and glomerular lesions induced by deoxycorticosterone acetate salt in mice. Nephrol Dial Transplant 2003, 18:1999–2004.

    Article  PubMed  CAS  Google Scholar 

  20. Susztak K, Bottinger E, Novetsky A, et al.: Molecular profiling of diabetic mouse kidney reveals novel genes linked to glomerular disease. Diabetes 2004, 53:784–794.

    Article  PubMed  CAS  Google Scholar 

  21. Park CW, Kim HW, Ko SH, et al.: Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator-activated receptor {alpha}. Diabetes 2006, 55:885–893.

    Article  PubMed  CAS  Google Scholar 

  22. Sharma K, McCue P, Dunn SR: Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol 2003, 284:1138–1144.

    Google Scholar 

  23. Naggert JK, Mu JL, Frankel W, et al.: Genomic analysis of the C57BL/Ks mouse strain. Mamm Genome 1995, 6:131–133.

    Article  PubMed  CAS  Google Scholar 

  24. Pillebout E, Burtin M, Yuan HT, et al.: Proliferation and remodeling of the peritubular microcirculation after nephron reduction: association with the progression of renal lesions. Am J Pathol 2001, 159:547–560.

    PubMed  CAS  Google Scholar 

  25. Zheng S, Noonan WT, Metreveli NS, et al.: Development of late-stage diabetic nephropathy in OVE26 diabetic mice. Diabetes 2004, 53:3248–3257.

    Article  PubMed  CAS  Google Scholar 

  26. Zheng Z, Schmidt-Ott KM, Chua S, et al.: A Mendelian locus on chromosome 16 determines susceptibility to doxorubicin nephropathy in the mouse. Proc Natl Acad Sci U S A 2005, 102:2502–2507.

    Article  PubMed  CAS  Google Scholar 

  27. Kimura M, Takahasi H, Ohtake T, et al.: Interstrain differences in murine daunomycin-induced nephrosis. Nephron 1993, 63:193–198.

    PubMed  CAS  Google Scholar 

  28. Tay YC, Wang Y, Kairaitis L, et al.: Can murine diabetic nephropathy be separated from superimposed acute renal failure? Kidney Int 2005, 68:391–398.

    Article  PubMed  Google Scholar 

  29. Ikeda H: KK mouse. Diabetes Res Clin Pract 1994, 24:S313–S316.

    Article  PubMed  Google Scholar 

  30. Shike T, Gohda T, Tanimoto M, et al.: Chromosomal mapping of a quantitative trait locus for the development of albuminuria in diabetic KK/Ta mice. Nephrol Dial Transplant 2005, 20:879–885.

    Article  PubMed  CAS  Google Scholar 

  31. Zanchi A, Moczulski DK, Hanna LS, et al.: Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism. Kidney Int 2000, 57:405–413.

    Article  PubMed  CAS  Google Scholar 

  32. Shin Shin Y, Baek SH, Chang KY, et al.: Relations between eNOS Glu298Asp polymorphism and progression of diabetic nephropathy. Diabetes Res Clin Pract 2004, 65:257–265.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao HJ, Wang S, Cheng H, et al.: Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol 2006, 17:2664–2669.

    Article  PubMed  CAS  Google Scholar 

  34. Kanetsuna Y, Takahashi K, Nagata M, et al.: Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am J Pathol 2007, 170:1473–1484.

    Article  PubMed  CAS  Google Scholar 

  35. Nakagawa T, Sato W, Glushakova O, et al.: Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J Am Soc Nephrol 2007, 18:539–550.

    Article  PubMed  CAS  Google Scholar 

  36. Frye EB, Degenhardt TP, Thorpe SR, Baynes JW: Role of the Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. J Biol Chem 1998, 273:18714–18719.

    Article  PubMed  CAS  Google Scholar 

  37. Cohen MP: Intervention strategies to prevent pathogenetic effects of glycated albumin. Arch Biochem Biophys 2003, 419:25–30.

    Article  PubMed  CAS  Google Scholar 

  38. Vlassara H, Brownlee M, Cerami A: Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proc Nat Acad Sci U S A 1981, 78:5190–5192.

    Article  CAS  Google Scholar 

  39. Wendt T, Tanji N, Guo J, et al.: Glucose, glycation, and RAGE: implications for amplification of cellular dysfunction in diabetic nephropathy. J Am Soc Nephrol 2003, 14:1383–1395.

    Article  PubMed  CAS  Google Scholar 

  40. Hofmann MA, Drury S, Fu C, et al.: RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999, 97:889–901.

    Article  PubMed  CAS  Google Scholar 

  41. Lander HM, Tauras JM, Ogiste JS, et al.: Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 1997, 272:17810–17814.

    Article  PubMed  CAS  Google Scholar 

  42. Wendt TM, Tanji N, Guo J, et al.: RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol 2003, 162:1123–1137.

    PubMed  CAS  Google Scholar 

  43. Inagi R, Yamamoto Y, Nangaku M, et al.: A severe diabetic nephropathy model with early development of nodule-like lesions induced by megsin overexpression in RAGE/iNOS transgenic mice. Diabetes 2006, 55:356–366.

    Article  PubMed  CAS  Google Scholar 

  44. Yamamoto Y, Kato I, Doi T, et al.: Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest 2001, 108:261–268.

    Article  PubMed  CAS  Google Scholar 

  45. Dunn SR, Qi Z, Bottinger EP, et al.: Utility of endogenous creatinine clearance as a measure of renal function in mice. Kidney Int 2004, 65:1959–1967.

    Article  PubMed  CAS  Google Scholar 

  46. Yuen PS, Dunn SR, Miyaji T, et al.: A simplified method for HPLC determination of creatinine in mouse serum. Am J Physiol Renal Physiol 2004, 286:1116–1119.

    Article  Google Scholar 

  47. Kakoki M, Takahashi N, Jennette JC, Smithies O: Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor. Proc Nat Acad Sci USA 2004, 101:13302–13305.

    Article  PubMed  CAS  Google Scholar 

  48. Tan Y, Keum JS, Wang B, et al.: Targeted deletion of B2-kinin receptors protects against the development of diabetic nephropathy. Am J Physiol Renal Physiol 2007, Jun 27; [Epub ahead of print].

  49. Hrabe de Angelis MH, Flaswinkel H, et al.: Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 2000, 25:444–447.

    Article  PubMed  CAS  Google Scholar 

  50. Favor J: Mechanisms of mutation induction in germ cells of the mouse as assessed by the specific locus test. Mutat Res 1999, 428:227–236.

    PubMed  CAS  Google Scholar 

  51. Beier DR: Sequence-based analysis of mutagenized mice. Mamm Genome 2000, 11:594–597.

    Article  PubMed  CAS  Google Scholar 

  52. Cordes SP: N-ethyl-N-nitrosourea mutagenesis: boarding the mouse mutant express. Microbiol Mol Biol Rev 2005, 69:426–439.

    Article  PubMed  CAS  Google Scholar 

  53. Nolan PM, Hugill A, Cox RD: ENU mutagenesis in the mouse: Application to human genetic disease. Brief Funct Genomic Proteomic 2002, 1:278–289.

    Article  PubMed  CAS  Google Scholar 

  54. Nadeau JH, Frankel WN: The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nat Genet 2000, 25:381–384.

    Article  PubMed  CAS  Google Scholar 

  55. Su LK, Kinzler KW, Vogelstein B, et al.: Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 1992, 256:668–670.

    Article  PubMed  CAS  Google Scholar 

  56. Vitaterna MH, King DP, Chang AM, et al.: Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 1994, 264:719–725.

    Article  PubMed  CAS  Google Scholar 

  57. Imperatore G, Knowler WC, Pettitt DJ, et al.: Segregation analysis of diabetic nephropathy in Pima Indians. Diabetes 2000, 49:1049–1056.

    Article  PubMed  CAS  Google Scholar 

  58. Vardarli I, Baier LJ, Hanson RL, et al.: Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3–23. Kidney Int 2002, 62:2176–2183.

    Article  PubMed  CAS  Google Scholar 

  59. Tchekvena EE, Rinchik EM, Polosukhina D, et al.: A sensitized screen of ENU mutagenized mice identifies dominant mutants predisposed to diabetic nephropathy. J Am Soc Nephrol 2007, 18:103–112.

    Article  CAS  Google Scholar 

  60. Flint J, Valdar W, Shifman S, Mott R: Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 2005, 6:271–286.

    Article  PubMed  CAS  Google Scholar 

  61. Stoll M, Kwitek-Black AE, Cowley AW Jr, et al.: New target regions for human hypertension via comparative genomics. Genome Res 2000, 10:473–482.

    Article  PubMed  CAS  Google Scholar 

  62. Sugiyama F, Churchill GA, Higgins DC, et al.: Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics 2001, 71:70–77.

    Article  PubMed  CAS  Google Scholar 

  63. Korstanje R, DiPetrillo K: Unraveling the genetics of chronic kidney disease using animal models. Am J Physiol Renal Physiol 2004, 287:347–352.

    Article  Google Scholar 

  64. Vitt U, Gietzen D, Stevens K, et al.: Identification of candidate disease genes by EST alignments, synteny, and expression and verification of Ensembl genes on rat chromosome 1q43-54. Genome Res 2004, 14:640–650.

    Article  PubMed  CAS  Google Scholar 

  65. Clee SM, Yandell BS, Schueler KM, et al.: Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus. Nat Genet 2006, 38:688–693.

    Article  PubMed  CAS  Google Scholar 

  66. Klein RF, Allard J, Avnur Z, et al.: Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 2004, 303:229–232.

    Article  PubMed  CAS  Google Scholar 

  67. Wang X, Ria M, Kelmenson PM, et al.: Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet 2005, 37:365–372.

    Article  PubMed  CAS  Google Scholar 

  68. Peirce JL, Lu L, Gu J, et al.: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Breyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breyer, M.D., Tchekneva, E., Qi, Z. et al. Examining diabetic nephropathy through the lens of mouse genetics. Curr Diab Rep 7, 459–466 (2007). https://doi.org/10.1007/s11892-007-0078-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-007-0078-3

Keywords

Navigation