Skip to main content

Cardiometabolic syndrome and chronic kidney disease


Chronic kidney disease (CKD) is increasingly recognized as a major risk factor for end-stage renal disease (ESRD), cardiovascular (CV) disease, and CV-related premature death. More than 8 million people in the United States have CKD; therefore, preventive strategies should be directed at identifying risk factors for this condition. There is growing evidence implicating the cardiometabolic syndrome, a clustering of CV risk factors that include obesity, insulin resistance, compensatory hyperinsulinemia, dysglycemia, atherogenic dyslipidemia, and hypertension. Factors mediating this relationship include increased glomerular filtration, increased vascular permeability, oxidative and endoplasmic reticulum stress, activation of the renin-angiotensin system, and inappropriate secretion of growth factors. The consequences are microalbuminuria, a marker of inflammation and endothelial dysfunction, renal vascular proliferation, extracellular matrix expansion, and CKD. Prevention of CKD should be directed at controlling all components of the cardiometabolic syndrome, with the ultimate goal of reducing the burden imposed by ESRD.

This is a preview of subscription content, access via your institution.

References and Recommended Reading

  1. 1.

    ManriqueC, Lastra G, Whaley-Connell A, Sowers JR: Hypertension and the cardiometabolic syndrome. J Clin Hypertens 2005, 7:471–476. This review examines the importance and the uniqueness of hypertension as a component of CMS. It highlights the notion that hypertension is a metabolic as well as a vascular disease, therefore opening a new paradigm for the treatment of both hypertension and CMS.

    Google Scholar 

  2. 2.

    US Renal Data System: USRDS 2005 Annual Data Report: Atlas of end-stage renal disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Disease; 2005.

    Google Scholar 

  3. 3.

    El-Atat Fadi, Stas SN, McFarlane SI, Sowers JR: The relationship between hyperinsulinemia, hypertension and progressive renal disease. J Am Soc Nephrol 2004, 15:2816–2827.

    PubMed  Article  Google Scholar 

  4. 4.

    K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Kidney Disease Outcome Quality Initiative [no authors listed]. Am J Kidney Dis 2002, 39:S1–S246.

  5. 5.

    CoreshJ, Astor BC, Greene T, et al.: Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 2003, 41:1–12. Using data from the NHANES III, this study assessed the prevalence of CKD by stage in the adult US population. The study sheds new lights on the high prevalence of this disorder that is a major cause of mortality in the United States. In fact, more patients with CKD die before they reach ESRD. The study estimates that nearly 20 million Americans have CKD and also examines the prevalence by stage of the kidney dysfunction.

    PubMed  Article  Google Scholar 

  6. 6.

    Biesenback G, Hubmann R, Grafinder P, et al.: 5-year overall survival rates of uremic type 1 and type 2 diabetic patients in comparison with age-matched nondiabetic patients with end-stage renal disease from a single dialysis center from 1991 to 1997. Diabetes Care 2000, 23:1860–1862.

    Article  Google Scholar 

  7. 7.

    ChenJ, Muntner P, Hamm LL, et al.: The metabolic syndrome and Chronic Kidney Disease in U.S. Adults. Ann Intern Med 2004, 140:167–174. This study examined the metabolic syndrome as a predictor for CKD in the adult US representative sample from the NHANES III. The study suggests that the metabolic syndrome might be animportant factor in the cause of CKD.

    PubMed  Google Scholar 

  8. 8.

    Tanaka H, Shiohira Y, Uezu Y, et al.: Metabolic syndrome and chronic kidney disease in Okinawa, Japan. Kidney Int 2006, 69:369–374.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Kurella M, Lo JC, Chertow GM: Metabolic syndrome and the risk of chronic kidney disease among nondiabetic adult. J Am Soc Nephrol 2005, 16:2134–2140.

    PubMed  Article  Google Scholar 

  10. 10.

    Fliser D, Pacini G, Engelleiter R, et al.: Insulin resistance and hyperinsulinemia are already present in patient with incipient renal disease. Kidney Int 1998, 53:1343–1347.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Chen J, Munter P, Hamm LL, et al.: Insulin resistance and risk of chronic kidney disease in nondiabetic US adults. J Am Soc Nephrol 2003, 14:469–477.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    HsuC, McCulloch CE, Iribarran C, et al.: Body mass index and risk for end-stage renal disease. Ann Intern Med 2006, 144:21–28. This historical cohort study demonstrated that higher BMI was a risk factor for ESRD in multivariable models that adjusted for age, sex, race, education level, smoking status, history of myocardial infarction, serum cholesterol level, urinalysis proteinuria, urinalysis hematuria, and serum creatinine level.

    PubMed  Google Scholar 

  13. 13.

    Boes E, Fliser D, Ritz E, et al.: Apolipoprotein A-IV predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease Study. J Am Soc Nephrol 2006, 17:528–536.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Hsu CC, Kao WHL, Coresh J, et al.: Apolipoprotein E and progression of chronic kidney disease. JAMA 2005, 293:2892–2899.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    El-Atat F, Aneja A, McFarlane S, Sowers JR: Obesity and hypertension. Endocrinol Metab Clin North Am 2003, 32:823–854.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Cheng LS, Davis RC, Raffel LJ, et al.: Coincident linkage of fasting plasma insulin and blood pressure to chromosome 7q in hypertensive Hispanic families. Circulation 2001, 104:1255–1260.

    PubMed  CAS  Google Scholar 

  17. 17.

    Wisse BE: The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol 2004, 15:2792–2800.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Cusumamo AM, Bodkini NL, Hansen BC, et al.: Glomerular hypertrophy is associated with hyperinsulinemia and precedes overt diabetes in aging rhesus monkeys. Am J Kidney Dis 2002, 40:1075–1085.

    Article  Google Scholar 

  19. 19.

    Mangrum A, Bakris GL: Predictors of renal and cardiovascular mortality in patients with non-insulin-dependent diabetes: a brief overview of microalbuminuria and insulin resistance. J Diabetes Complications 1997, 11:352–357.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Abuisha B, Kumar S, Malik R, Boulton AJ: Relationship of elevated urinary albumin excretion to components of the metabolic syndrome in non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 1998, 39:93–99.

    Article  Google Scholar 

  21. 21.

    Steinke JM, Sinaiko AR, Kramer MS, et al.: The early natural history of nephropathy in type 1 diabetes. III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 2005, 54:2164–2171.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Bakris GL: Clinical importance of microalbuminuria in diabetes and hypertension. Curr Hypertens Rep; 2004, 6:352–356

    PubMed  Google Scholar 

  23. 23.

    Cohen AJ, McCarthy DM, Stoff JS: Direct hemodynamic effect of insulin in the isolated perfused kidney. Am J Physiol 1989, 257:580–585.

    Google Scholar 

  24. 24.

    Dengel DR, Goldberg AP, Mayuga RS, et al.: Insulin resistance, elevated glomerular filtration and renal injury. Hypertension 1996, 28:127–132.

    PubMed  CAS  Google Scholar 

  25. 25.

    Catalano C, Muscelli E, Quinones Galvan A, et al.: Effect of insulin on systemic and renal handling of albumin in nondiabetic and NIDDM subjects. Diabetes 1997, 46:868–875.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Sowers JR: Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol 2001, 86:713–318.

    Google Scholar 

  27. 27.

    YoungBA, Johnson RJ, Alpers CE, et al.: Cellular events in the evolution of diabetic nephropathy. Kidney Int 1995, 47:935–944.This study was designed to examine the changes in cellular events in diabetic nephropathy. Investigators conducted sequential studies of glomeruli in rats with streptozotocin-induced diabetic nephropathy demonstrating multiple cellular events that preceded any detectable increases in glomerular gene expression or deposition of collagen I, IV, or laminin.

    PubMed  CAS  Google Scholar 

  28. 28.

    Aron DC, Rosenzweig JL, Abboud HE: Synthesis and binding of insulin-like growth factor 1 by human glomerular mesangial cells. J Clin Endocrinol Metab 1989, 68:585–591.

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Conti FG, Stroker LJ, Lesniak MA, et al.: Studies on binding and mitogenic effect of insulin and insulin-like growth factor 1 in glomerular mesangial cells. Endocrinology 1988, 122:2788–2795.

    PubMed  CAS  Google Scholar 

  30. 30.

    Mooney A, Jobson T, Bacon R, et al.: Cytokines promote glomerular mesangial cell survival in vitro by stimulus-dependent inhibition of apoptosis. J Immunol 1997, 159:3949–3960.

    PubMed  CAS  Google Scholar 

  31. 31.

    Anderson PW, Zhang XY, Tian J, et al.: Insulin and angiotensin II are additive in stimulating TGF-beta 1 and matrix mRNAs in mesangial cells. Kidney Int 1996, 50:745–753.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Wang S, Denichilo M, Brubaker C, Hirschberg R: Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Kidney Int 2001, 60:96–105.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Ferri C, Pittoni V, Piccoli A, et al.: Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo. J Clin Endocrinol Metab 1995, 80:829–835.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Ferri C, Bellini C, Desideri G, et al.: Endogenous insulin modulates circulating endothelin-1 concentrations in humans. Diabetes Care 1996, 19:504–506.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Simonson MS, Herman WH: Protein kinase C and protein tyrosine kinase activity contribute to mitogenic signaling by endothelin-1. Cross-talk between G protein-coupled receptors and pp60c-src. J Biol Chem 1993, 268:9347–9357.

    PubMed  CAS  Google Scholar 

  36. 36.

    Juhan-Vague I, Alessi MC: PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thromb Haemost 1997, 78:656–660.

    PubMed  CAS  Google Scholar 

  37. 37.

    Hirano T, Kashiwazaki K, Moritomo Y, et al.: Microalbuminuria is directly associated with increased plasma PAI-1 and factor VII levels in NIDDM patients. Diabetes Res Clin Pract 1997, 36:11–18.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Rerolle JP, Hertig A, Nguyen G, et al.: Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis. Kidney Int 2000, 58:1841–1850.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Robertson RP, Harmon J, Tran PO, et al.: Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003, 52:581–587.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Ozcan U, Cao Q, Yilmaz E, et al.: Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004, 306:457–461.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Taal MW, Brenner BM: Renoprotective benefits of RAS inhibition: from ACEI to angiotensin II antagonists. Kidney Int 2000, 57:1803–1817.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Navar LG: Intrarenal renin-angiotensin system in hypertension. Kidney Int 2004, 65:1522–1532.

    PubMed  Article  Google Scholar 

  43. 43.

    Carey RM, Siragy HM: Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev 2003, 24:261–271.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Kobori H, Nishiyama A, Abe Y, Navar LG: Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet. Hypertension 2003, 41:529–597.

    Google Scholar 

  45. 45.

    Ruan X, Wagner C, Chatziantoniou C, et al.: Regulation of angiotensin II receptor AT1 subtypes in renal afferent arterioles during chronic changes in sodium diet. J Clin Invest 1997, 99:1072–1081.

    PubMed  CAS  Google Scholar 

  46. 46.

    Wiecek A, Chudek J, Kokot F: Role of angiotensin II in the progression of diabetic nephropathy—therapeutic implications. Nephrol Dial Transplant 2003, 18:v16-v20.

    PubMed  Article  Google Scholar 

  47. 47.

    Ruiz-Ortega M, Rupérez M, Esteban V, et al.: Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases Nephrol Dial Transplant 2006, 21:16–20.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Rodriguez-Vita J, Sanchez-Lopez E, Esteban V, et al.: Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation 2005, 111:2509–2517.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Ruiz-Ortega M, Lorenzo O, Ruperez M, et al.: Systemic infusion of angiotensin II into normal rats activates nuclear factor kappa-B and AP-1 in the kidney. Role of AT1 and AT2 receptors. Am J Pathol 2001, 158:1743–1756.

    PubMed  CAS  Google Scholar 

  50. 50.

    Lorenzo E, Ruiz-Ortega M, Suzuki Y, et al.: Angiotensin III activates nuclear transcription factor-kappa B in cultured mesangial cells mainly via AT2 receptors: studies with AT1 receptor-knockout mice. J Am Soc Nephrol 2002, 13:1162–1171.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Rocha R, Chander PN, Khanna K, et al.: Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 1998, 31:451–458.

    PubMed  CAS  Google Scholar 

  52. 52.

    Aldigier JC, Kanjanbuch T, Ma LJ, et al.: Regression of existing glomerulosclerosis by inhibition of aldosterone. J Am Soc Nephrol 2005, 16:3306–3314.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Greene EL, Kren S, Hostetter TH: Role of aldosterone in the remnant kidney model in the rat. J Clin Invest 1996, 98:1063–1068.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Hostetter TH, Kren S, Ibrahim HN: Mineralocorticoid receptor blockade in the remnant kidney model [abstract]. J Am Soc Nephrol 1999, 10:75.

    Article  Google Scholar 

  55. 55.

    Nagai Y, Miyata K, Sun GP, et al.: Aldosterone stimulates collagen gene expression and synthesis via activation of ERK1/2 in rat renal fibroblasts. Hypertension 2005, 46:1039–1045.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Kahn R, Buse J, Ferrannini E, Stern M: The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2005, 28:2289–2304.

    PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to James R. Sowers MD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lastra, G., Manrique, C., McFarlane, S.I. et al. Cardiometabolic syndrome and chronic kidney disease. Curr Diab Rep 6, 207–212 (2006).

Download citation


  • Insulin Resistance
  • Chronic Kidney Disease
  • Metabolic Syndrome
  • Diabetic Nephropathy
  • Endoplasmic Reticulum Stress