Ignarro LJ, Cirino G, Casini A, Napoli C: Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 1999, 34:876–884.
Article
Google Scholar
Napoli C, Ignarro LJ: Nitric oxide and atherosclerosis. Nitric Oxide 2001, 5:88–97.
PubMed
Article
CAS
Google Scholar
Napoli C: Nitric oxide and atherosclerotic lesion progression: an overview. J Card Surg 2002, 17:355–362.
PubMed
Article
Google Scholar
Furchgott RF: Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide. Biosci Rep 1999, 19:235–251.
PubMed
Article
CAS
Google Scholar
Ignarro LJ, Napoli C, Loscalzo J: Nitric oxide-donating compounds and cardiovascular agents modulating the bioactivity of nitric oxide: an overview. Circ Res 2002, 90:21–28.
PubMed
Article
CAS
Google Scholar
Napoli C, Ignarro LJ: Nitric oxide-releasing drugs. Annu Rev Pharmacol Toxicol 2003, 43:97–123. This exaustive review reports the state of the art of drugs based on interaction with NO.
PubMed
Article
CAS
Google Scholar
Napoli C, Lerman LO: Involvement of oxidation-sensitive mechanisms in the cardiovascular effects of hypercholesterolemia. Mayo Clin Proc 2001, 76:619–631.
PubMed
CAS
Article
Google Scholar
de Nigriws F, Lerman A, Ignarro LJ, et al.: Oxidation-sensitive mechanisms, vascular apoptosis and atherosclerosis. Trends Mol Med 2003, 9:351–359. This review reports the novel interactions among oxidation-sensitive mechanisms, NO, and vascular damage.
Article
CAS
Google Scholar
Drexler H: Nitric oxide and coronary endothelial dysfunction in humans. Cardiovasc Res 1999, 43:572–579.
PubMed
Article
CAS
Google Scholar
Rodriguez-Porcel M, Lerman LO, Herrmann J, et al.: Hypercholesterolemia and hypertension have synergistic deleterious effects on coronary endothelial function. Arterioscler Thromb Vasc Biol 2003, 23:885–891. This is the first convincing demonstration that hypercholesterolemia and hypertension have synergistic deleterious effects on coronary endothelial function.
PubMed
Article
CAS
Google Scholar
Verbeuren TJ, Coene MC, Jordaens FH, et al.: Effect of hypercholesterolemia on vascular reactivity in the rabbit: II. Influence of treatment with dipyridamole on endotheliumdependent and endothelium-independent responses in isolated aortas of control and hypercholesterolemic rabbits. Circ Res 1986, 59:496–504.
PubMed
CAS
Google Scholar
Meredith IT, Anderson TJ, Uehata A, et al.: Role of endothelium in ischemic coronary syndromes. Am J Cardiol 1993, 72:27C-31C.
PubMed
Article
CAS
Google Scholar
Cooke JP: Does ADMA cause endothelial dysfunction?
Arterioscler Thromb Vasc Biol 2000, 20:2032–2037.
PubMed
CAS
Google Scholar
Boger RH, Bode-Boger SM, Szuba A, et al.: Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 1998, 98:1842–1847.
PubMed
CAS
Google Scholar
Wever RM, Luscher TF, Rabelink TJ: Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation 1998, 97:108–112.
PubMed
CAS
Google Scholar
Cardillo C, Kilcoyne CM, Cannon RO III, et al.: Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension 1997, 30:57–63.
PubMed
CAS
Google Scholar
Cai H, Harrison DG: Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000, 87:840–844.
PubMed
CAS
Google Scholar
Tousoulis D, Tentolouris C, Crake T, et al.: Basal and flowmediated NO production by atheromatous coronary arteries. J Am Coll Cardiol 1997, 29:1256–1262.
PubMed
Article
CAS
Google Scholar
Creager MA, Galagher SJ, Girerd XJ, et al.: L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest 1992, 90:1248–1253.
PubMed
CAS
Google Scholar
Drexler H, Zeiher A, Meinzer K, Just H: Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolemic patients by L-arginine. Lancet 1991, 33:1546–1550.
Article
Google Scholar
Tousoulis D, Davies G, Tentolouris C, et al.: Coronary stenosis dilation induced by L-arginine. Lancet 1997, 349:1812–1813.
PubMed
Article
CAS
Google Scholar
Lerman A, Burnett JC Jr, Higano ST, et al.: Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation 1998, 97:2123–2128.
PubMed
CAS
Google Scholar
Cooke JP, Oka RK: Atherogenesis and the arginine hypothesis. Curr Atheroscler Rep 2001, 3:252–259.
PubMed
CAS
Google Scholar
Tousoulis D, Davies GJ, Tentolouris C, et al.: Effects of changing the availability of the substrate for NO synthase by L-arginine administration on coronary vasomotor tone in angina patients with angiographically narrowed and in patients with normal coronary arteries. Am J Cardiol 1998, 82:1110–1113.
PubMed
Article
CAS
Google Scholar
Blum A, Porat R, Rosenschein U, et al.: Clinical and inflammatory effects of dietary L-arginine in patients with intractable angina pectoris. Am J Cardiol 1999, 83:1488–1490.
PubMed
Article
CAS
Google Scholar
Fujita H, Yamabe H, Yokoyama M: Effect of L-arginine administration on myocardial thallium-201 perfusion during exercise in patients with angina pectoris and normal coronary angiograms. J Nucl Cardiol 2000, 7:97–102.
PubMed
Article
CAS
Google Scholar
Blum A, Hathaway L, Mincemoyer R, et al.: Oral L-arginine in patients with coronary artery disease on medical management. Circulation 2000, 101:2160–2164.
PubMed
CAS
Google Scholar
Tousoulis D, Davies GJ, Tentolouris C, et al.: Vasomotor effects of L- and D-arginine in stenotic atheromatous coronary plaque. Heart 2001, 86:296–301.
PubMed
Article
CAS
Google Scholar
de Nigris F, Lerman LO, Ignarro-Williams S, et al.: Beneficial effects of antioxidants and L-arginine on oxidation-sensitive gene expression and endothelial nitric oxide synthase activity at sites of disturbed shear stress. Proc Natl Acad Sci U S A 2003, 100:1420–1425. This is the first evidence that L-arginine may modulate gene expression at the site of shear stress and atherosclerosis.
PubMed
Article
CAS
Google Scholar
Luoma JS, Yla-Herttuala S: Expression of inducible NO synthase in macrophages and smooth muscle cells in various types of human atherosclerotic lesions. Virchows Arch 1999, 434:561–568.
PubMed
Article
CAS
Google Scholar
Ross R: Atherosclerosis-an inflammatory disease. N Engl J Med 1999, 340:115–126.
PubMed
Article
CAS
Google Scholar
Baker CS, Hall RJ, Evans TJ, et al.: Cyclooxygenase-2 is widely expressed in atherosclerotic lesion affecting native and transplanted human coronary arteries and colocalizes with inducible NO synthase and nitrotyrosine particularly in macrophages. Arterioscler Thromb Vasc Biol 1999, 19:646–655.
PubMed
CAS
Google Scholar
Mallat Z, Heymes C, Ohan J, et al.: Expression of interleukin- 10 in advanced human atherosclerotic plaques: relation to inducible nitric oxide synthase expression and cell death. Arterioscler Thromb Vasc Biol 1999, 19:61–66.
Google Scholar
Hingorani AD, Liang CF, Fatibene J, et al.: A common variant of the endothelial NO synthase (Glu298-->Asp) is a major risk factor for coronary artery disease in the UK. Circulation 1999, 100:1515–1520.
PubMed
CAS
Google Scholar
Guzik TJ, Black E, West NE, et al.: Relationship between the G894T polymorphism (Glu298Asp variant) in endothelial NO synthase and NO-mediated endothelial function in human atherosclerosis. Am J Med Genet 2001, 100:130–137.
PubMed
Article
CAS
Google Scholar
Fowkes FG, Lee AJ, Hau CM, et al.: Methylene tetrahydrofolate reductase (MTHFR) and NO synthase (
e
NOS) genes and risks of peripheral arterial disease and coronary heart disease: Edinburgh Artery Study. Atherosclerosis 2000, 150:179–185.
PubMed
Article
CAS
Google Scholar
Mozes G, Kullo IJ, Mohacsi TG, et al.: Ex vivo gene transfer of endothelial NO synthase to atherosclerotic rabbit aortic rings improves relaxations to acetylcholine. Atherosclerosis 1998, 141:265–271.
PubMed
Article
CAS
Google Scholar
Behr D, Rupin A, Fabiani JN, Verbeuren TJ: Distribution and prevalence of inducible NO synthase in atherosclerotic vessels of long-term cholesterol-fed rabbit. Atherosclerosis 1999, 142:335–344.
PubMed
Article
CAS
Google Scholar
Qian H, Neplioueva V, Shetty GA, et al.: NO synthase gene therapy rapidly reduces adhesion molecule expression and inflammatory cell infiltration in carotid arteries of cholesterol-fed rabbits. Circulation 1999, 99:2979–2982.
PubMed
CAS
Google Scholar
Wang BY, Ho PS, Schwarzacher SP, et al.: Regression of atherosclerosis: role of NO and apoptosis. Circulation 1999, 99:1236–1241.
PubMed
CAS
Google Scholar
Kauser K, da Cunha V, Fitch R, et al.: Role of endogenous NO in progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Physiol 2000, 278:H1679-H1685.
CAS
Google Scholar
Egashira K, Koyanagi M, Kitamoto S, et al.: Anti-monocyte chemoattractant protein-1 gene therapy inhibits vascular remodeling in rats: blockade of MCP-1 activity after intramuscular transfer of a mutant gene inhibits vascular remodeling induced by chronic blockade of NO synthesis. FASEB J 2000, 14:1974–1978.
PubMed
Article
CAS
Google Scholar
Kuhlencordt PJ, Gyurko R, Han F, et al.: Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial NO synthase double-knockout mice. Circulation 2001, 104:448–454.
PubMed
CAS
Google Scholar
Calara F, Silvestre M, Casanada F, et al.: Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice. J Pathol 2001, 195:257–263. First systematic study that shows the occurrence of spontaneous atherosclerotic plaque rupture in hypercholesterolemic mice.
PubMed
Article
CAS
Google Scholar
Chen J, Kuhlencordt PJ, Astern J, et al.: Hypertension does not account for the accelerated atherosclerosis and development of aneurysms in male apolipoprotein e/endothelial NO synthase double knockout mice. Circulation 2001, 104:2391–2394.
PubMed
CAS
Google Scholar
Lee PC, Wang ZL, Qian S, et al.: Endothelial NO synthase protects aortic allografts from the development of transplant arteriosclerosis. Transplantation 2000, 69:1186–1192.
PubMed
Article
CAS
Google Scholar
Shi W, Wang X, Shih DM, et al.: Paradoxical reduction of fatty streak formation in mice lacking endothelial nitric oxide synthase. Circulation 2002, 105:2078–2082.
PubMed
Article
CAS
Google Scholar
Lamping K, Faraci F: Enhanced vasoconstrictor responses in eNOS deficient mice. Nitric Oxide 2003, 8:207–213.
PubMed
Article
CAS
Google Scholar
Napoli C, Lerman LO, Sica V, et al.: Microarray analysis: a novel research tool for cardiovascular scientists and physicians. Heart 2003, 89:597–604.
PubMed
Article
CAS
Google Scholar
Napoli C, de Nigris F, Palinski W: Multiple role of reactive oxygen species in the arterial wall. J Cell Biochem 2001, 82:674–682.
PubMed
Article
CAS
Google Scholar
Witztum JL: The oxidation hypothesis of atherosclerosis. Lancet 1994, 344:793–795.
PubMed
Article
CAS
Google Scholar
Napoli C, D’Armiento FP, Witztum JL, et al.: Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 1997, 100:2680–2690.
PubMed
CAS
Google Scholar
Napoli C, Glass CK, Witztum JL, et al.: Influence of maternal hypercholesterolemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet 1999, 354:1234–1241.
PubMed
Article
CAS
Google Scholar
Flavahan NA: Atherosclerosis or lipoprotein-induced endothelial dysfunction. Circulation 1992, 85:1927–1938.
PubMed
CAS
Google Scholar
Chin JH, Azhar S, Hoffman BB: Inactivation of endothelial derived relaxing factor by oxidized lipoproteins. J Clin Invest 1992, 89:10–18.
PubMed
CAS
Article
Google Scholar
Pritchard KA Jr, Groszek L, Sessa WC, et al.: Native low-density lipoprotein increases endothelial cell NO synthase generation of superoxide anion. Circ Res 1995, 77:510–518.
PubMed
CAS
Google Scholar
Vergnani L, Hatrik S, Ricci F, et al.: Effect of native and oxidized low-density lipoprotein on endothelial NO and superoxide production: key role of L-arginine availability. Circulation 2000, 101:1261–1266.
PubMed
CAS
Google Scholar
Napoli C, Paternò R, Faraci FM, et al.: Mildly oxidized low-density lipoprotein impairs responses of carotid but not basilar artery in rabbits. Stroke 1997, 28:2266–2272.
PubMed
CAS
Google Scholar
Napoli C, Witztum JL, de Nigris F, et al.: Intracranial arteries of human fetuses are more resistant to hypercholesterolemiainduced fatty streak formation than extracranial arteries. Circulation 1999, 99:2003–2010.
PubMed
CAS
Google Scholar
D’Armiento FP, Bianchi A, de Nigris F, et al.: Age-related effects on atherogenesis and scavenger enzymes of intracranial and extracranial arteries in men without classical risk factors for atherosclerosis. Stroke 2001, 32:2472–2480.
PubMed
CAS
Google Scholar
Napoli C, Lerman LO, de Nigris F, et al.: Glycoxidized low-density lipoprotein downregulates endothelial nitric oxide synthase in human coronary cells. J Am Coll Cardiol 2002, 40:1515–1522.
PubMed
Article
CAS
Google Scholar
Napoli C, Ackah E, De Nigris F, et al.: Chronic treatment with nitric oxide-releasing aspirin reduces plasma low-density lipoprotein oxidation and oxidative stress, arterial oxidation-specific epitopes, and atherogenesis in hypercholesterolemic mice. Proc Natl Acad Sci U S A 2002, 99:12467–12470.
PubMed
Article
CAS
Google Scholar
Frei B: On the role of vitamin C and other antioxidants in atherogenesis and vascular dysfunction. Proc Soc Exp Biol Med 1999, 222:196–204.
PubMed
Article
CAS
Google Scholar
Palinski W, Napoli C: The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. FASEB J 2002, 16:1348–1360.
PubMed
Article
CAS
Google Scholar