Skip to main content

The influence of dietary fat on insulin resistance

Abstract

Dietary fat has been implicated in the development of insulin resistance in both animals and humans. Most, although not all, studies suggest that higher levels of total fat in the diet result in greater whole-body insulin resistance. Although, in practice, obesity may complicate the relationship between fat intake and insulin resistance, clinical trials demonstrate that high levels of dietary fat can impair insulin sensitivity independent of body weight changes. In addition, it appears that different types of fat have different effects on insulin action. Saturated and certain monounsaturated fats have been implicated in causing insulin resistance, whereas polyunsaturated and omega-3 fatty acids largely do not appear to have adverse effects on insulin action. Given the importance of insulin resistance in the development of diabetes and heart disease, establishing appropriate levels of fat in the diet is an important clinical goal.

This is a preview of subscription content, access via your institution.

References and Recommended Reading

  1. 1.

    Storlein LH, Higgins JA, Thomas TC, et al.: Diet composition and insulin action in animal models. Br J Nutr 2000, 83(suppl 1):S85-S90.

    Google Scholar 

  2. 2.

    Mayer-Davis EJ, Monaco JH, Hoen HM, et al.: Dietary fat and insulin sensitivity in a triethnic population: the role of obesity. The Insulin Resistance Atherosclerosis Study (IRAS). Am J Clin Nutr 1997, 65:79–87.

    PubMed  CAS  Google Scholar 

  3. 3.

    Van Dam RM, Willett WC, Rimm EB, et al.: Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care 2002, 25:417–424.

    PubMed  Article  Google Scholar 

  4. 4.

    Marshall JA, Hoag S, Shetterly S, Hamman RF: Dietary fat predicts conversion from impaired glucose tolerance to NIDDM. The San Luis Valley Diabetes Study. Diabetes Care 1994, 17:50–60.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Mayer EJ, Newman B, Quesenberry CPJr, Selby JV: Usual dietary fat intake and insulin concentration in healthy women twins. Diabetes Care 1993, 16:1459–1469.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Harding AH, Sargeant LA, Welch A, et al.: Fat consumption and HbA1c levels: the EPIC-Norfolk Study. Diabetes Care 2001, 24:1911–1916.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Gulliford MC, Ukoumunne OC: Determinants of glycated haemoglobin in the general population: associations with diet, alcohol and cigarette smoking. Eur J Clin Nutr 2001, 55:615–623. This epidemiologic study examined the impact of diet and other factors on glycated hemoglobin in 15,809 healthy adults. After adjusting for age, body mass index, waist-hip ratio, activity, and education, they found that glycated hemoglobin was higher in individuals who used solid fat for cooking, drank whole rather than skim milk, or used butter/margarine spreads. They concluded that more frequent consumption of fat-containing foods is associated with glucose abnormalities in the general population.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Feskens EJM, Virtanen SM, Rasanen L, et al.: Dietary factors determining diabetes and impaired glucose tolerance: a 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care 1995, 18:1104–1112.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Meyer KA, Kushi LH, Jacobs DR, et al.: Dietary fat and incidence of type 2 diabetes in older Iowa women. Diabetes Care 2001, 24:1528–1535.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Hu FB, Manson JE, Stampfer MJ, et al.: Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 2001, 345:790–797.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Chen M, Bergman RN, Porte D Jr: Insulin resistance and beta-cell dysfunction in aging: the importance of dietary carbohydrate. J Clin Endocrinol Metab 1988, 67:951–957.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Fukagawa NK, Anderson JW, Hageman G, et al.: High-carbohydrate, high-fiber diets increase peripheral insulin sensitivity in healthy young and old adults. Am J Clin Nutr 1990, 52:524–528.

    PubMed  CAS  Google Scholar 

  13. 13.

    Swinburn BA, Boyce VL, Bergman RN, et al.: Deterioration in carbohydrate metabolism and lipoprotein changes induced by modern, high fat diet in Pima Indians and Caucasians. J Clin Endocrinol Metab 1991, 73:156–165.

    PubMed  CAS  Google Scholar 

  14. 14.

    Borkman M, Campbell LV, Chisholm DJ, Storlien LH: Comparison of the effects on insulin sensitivity of high carbohydrate and high fat diets in normal subjects. J Clin Endocrinol Metab 1991, 72:432–437.

    PubMed  CAS  Google Scholar 

  15. 15.

    Leclerc I, Davignon I, Lopez D, Garrel DR: No change in glucose tolerance and substrate oxidation after a highcarbohydrate, low-fat. Diet Metab 1993, 42:365–370.

    CAS  Google Scholar 

  16. 16.

    Yost TJ, Jensen DR, Haugen BR, Eckel RH: Effect of dietary macronutrient composition on tissue-specific lipoprotein lipase activity and insulin action in normal-weight subjects1-3. Am J Clin Nutr 1998, 68:296–302.

    PubMed  CAS  Google Scholar 

  17. 17.

    Lovejoy JC, Windhauser MM, Rood JC, et al.: Effect of a controlled high-fat vs. low-fat diet on insulin sensitivity and leptin levels in African American and Caucasian women. Metabolism 1998, 47:1520–1524.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Straznicky NE, O'Callaghan CJ, Barrington VE, Louis WJ: Hypotensive effect of low-fat high-carbohydrate diet can be independent of changes in plasma insulin concentrations. Hypertension 1999, 34:580–585.

    PubMed  CAS  Google Scholar 

  19. 19.

    Louheranta AM, Schwab US, Sarkkinen ES, et al.: Insulin sensitivity after a reduced-fat diet and a monoene-enriched diet in subjects with elevated serum cholesterol and triglyceride concentrations. Nutr Metab Cardiovasc Dis 2000, 10(4):177–187. This study addresses the issue of the relative importance of total dietary fat versus type of dietary fat. Their results show that a lower fat diet (34% energy from fat) improves insulin sensitivity to a greater extent than does a diet high in both total and monounsaturated fat (39% energy from fat).

    PubMed  CAS  Google Scholar 

  20. 20.

    Bisschop PH, de Metz J, Ackermans MT, et al.: Dietary fat content alters insulin-mediated glucose metabolism in healthy men. Am J Clin Nutr 2001, 73:554–559.

    PubMed  CAS  Google Scholar 

  21. 21.

    Swinburn BA, Metcalf PA, Ley SJ: Long-term (5-year) effects of a reduced fat diet intervention in individuals with glucose intolerance. Diabetes Care 2001, 24:619–624.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Knowler WC, Barrett-Connor E, Fowler SE, et al.: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002, 346:393–403. A landmark study showing that a low-fat diet in combination with exercise is more effective at preventing the development of diabetes in a population with impaired glucose tolerance than is the insulinsensitizing drug metformin.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Tuomilehto J, Lindstrom JJ, Erikksson JG, et al.: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001, 344:1343–1350.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Pan Xiao-Ren, Li G-W, Hu Y-H, et al.: Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes Care 1997, 20:537–544.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Marshall JA, Bessesen DH, Hamman RF: High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: the San Luis Valley Diabetes Study. Diabetologia 1997, 49:430–438.

    Article  Google Scholar 

  26. 26.

    Feskens EJ, Loeber JG, Kromhout D: Diet and physical activity as determinants of hyperinsulinemia: the Zutphen Elderly Study. Am J Epidemiol 1994, 140:350–360.

    PubMed  CAS  Google Scholar 

  27. 27.

    Uusitupa M, Schwab U, Mäkimattila S, et al.: Effects of two high-fat diets with different fatty acid compositions on glucose and lipid metabolism in healthy young women. Am J Clin Nutr 1994, 1310–1316.

  28. 28.

    Riccardi G, Rivellese AA: Dietary treatment of the metabolic syndrome-the optimal diet. Br J Nutr 2000, 83(suppl 1):S143-S148.

    PubMed  CAS  Google Scholar 

  29. 29.

    Rasmussen O, Lauszus FF, Christiansen C, et al.: Differential effects of saturated and monounsaturated fat on blood glucose and insulin responses in subjects with noninsulin-independent diabetes mellitus. Am J Clin Nutr 1996, 63:249–253.

    PubMed  CAS  Google Scholar 

  30. 30.

    Garg A, Bantle JP, Henry RR, et al.: Effects of varying carbohydrate content of diet in patients with non-insulindependent diabetes mellitus. JAMA 1994, 271:1421–1428.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Sarkkinen E, Schwab U, Niskanen L, et al.: The effects of monounsaturated-fat enriched diet and polyunsaturated-fat enriched diet on lipid and glucose metabolism in subjects with impaired glucose tolerance. Eur J Clin Nutr 1996, 50:592–598.

    PubMed  CAS  Google Scholar 

  32. 32.

    Borkman M, Storlein LH, Pan DA, et al.: The relationship between insulin sensitivity and the fatty-acid composition of skeletal muscle phospholipids. N Engl J Med 1993, 328:238–242.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Vessby B, Aro A, Skarfors E, et al.: The risk to develop NIDDM is related to the fatty acid composition of serum cholesterol esters. Diabetes 1994, 43:1353–1357.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Folsom AR, Ma J, McGovern PG, Eckfeldt JH: Relation between plasma phospholipid saturated fatty acids and hyperinsulinemia. Metabolism 1995, 45:223–228.

    Article  Google Scholar 

  35. 35.

    Lovejoy JC, Champagne CM, Smith SR, et al.: Relationship of dietary fat and serum cholesterol ester and phospholipid fatty acids to markers of insulin resistance in men and women with a range of glucose tolerance. Metabolism 2001, 50:86–92.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Vessby B: Dietary fat and insulin action in humans. Br J Nutr 2000, 83(suppl 1):S91-S96.

    PubMed  CAS  Google Scholar 

  37. 37.

    Louheranta AM, Turpeinen AK, Vidgren HM, et al.: A high-trans fatty acid diet and insulin sensitivity in young healthy women. Metabolism 1999, 48:870–875.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Lovejoy JC, Smith SR, Champagne CM, et al.: Effects of diets enriched in saturated (palmitic), monounsaturated (oleic), or trans (elaidic) fatty acids on insulin action and substrate oxidation in healthy adults. Diabetes Care 2002, in press.

  39. 39.

    Christiansen E, Schnider S, Palmvig B, et al.: Intake of a diet high in trans monounsaturated fatty acids or saturated fatty acids: effects on postprandial insulinemia and glycemia in obese patients with NIDDM. Diabetes Care 1997, 20:881–887.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Fasching P, Ratheiser K, Waldhausl W, et al.: Metabolic effects of fish-oil supplementation in patients with impaired glucose tolerance. Diabetes 1991, 40:583–589.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Popp-Snijders C, Schouten JA, Heine RJ, et al.: Dietary supplementation of omega-3 polyunsaturated fatty acids improves insulin sensitivity in non-insulin dependent diabetes. Diabetes Res 1987, 4:141–147.

    PubMed  CAS  Google Scholar 

  42. 42.

    Waldhausl W, Ratheiser K, Komjati M, et al.: Increase of insulin sensitivity and improvement of intravenous glucose tolerance by fish oil in healthy man. In Health Effects of Fish and Fish Oils. Edited by Chandra RK. St. John's, Newfoundland: ARTS Biomedical Publishers and Distributors; 1989:171–187.

    Google Scholar 

  43. 43.

    Denkins YM, Lovejoy JC, Smith SR: Omega-3 PUFA supplementation and insulin sensitivity. FASEB J 2002, 16:A24.

    Google Scholar 

  44. 44.

    Taouis M, Dagou C, Ster C, et al.: N-3 polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am J Physiol 2002, 282:E664-E671. Omega-3 fatty acids appear to be the one type of fatty acid that has a consistent beneficial effect on insulin action. This paper addresses the molecular mechanism by which omega-3 fatty acids improve whole-body insulin sensitivity via their action on muscle insulin receptor signaling.

    CAS  Google Scholar 

  45. 45.

    Jucker BM, Cline GW, Barucci N, Shulman GI: Differential effects of safflower oil versus fish oil feeding on insulin-stimulated glycogen synthesis, glycolysis, and pyruvate dehydrogenase flux in skeletal muscle: a 13C nuclear magnetic resonance study. Diabetes 1999, 48:134–140.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Oakes ND, Cooney GJ, Camilleri S, et al.: Mechanism of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes 1997, 46:1768–1774.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Zierath JR, Houseknecht KL, Gnudi L, Kahn BB: High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect. Diabetes 1997, 46:215–223.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Anai M, Funaki M, Ogihara T, et al.: Enhanced insulinstimulated activation of phosphatidylinositol 3-kinase in the liver of high-fat-fed rats. Diabetes 1999, 48:158–169.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Montell E, Turini M, Marotta M, et al.: DAG accumulation from saturated fatty acids desensitizes insulin stimulation from glucose uptake in muscle cells. Am J Physiol 2001, 280:E229-E237.

    CAS  Google Scholar 

  50. 50.

    Luan J, Browne PO, Harding A-H, et al.: Evidence for gene-nutrient interaction at the PPARgamma locus. Diabetes 2001, 50:686–689. Addresses the importance of genetic polymorphisms in regulating individual response to dietary fat intake. The results suggest that a polymorphism in the PPARγ gene is related to the impact of saturated fat on insulin response. This highlights the key role that genetic variation is likely to play in examining questions related to diet and disease risk.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lovejoy, J.C. The influence of dietary fat on insulin resistance. Curr Diab Rep 2, 435–440 (2002). https://doi.org/10.1007/s11892-002-0098-y

Download citation

Keywords

  • Insulin Resistance
  • Insulin Sensitivity
  • Impaired Glucose Tolerance
  • Trans Fatty Acid
  • Trans Fatty Acid Intake