Skip to main content
Log in

Intensive diabetes management in pediatric patients

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Intensive diabetes management requires frequent home glucose monitoring, multiple daily insulin injections or chronic subcutaneous insulin infusion, and adjustments of insulin doses in response to changes in blood glucose levels, food intake, and exercise. It also requires a periodic review of previous glucose results to recognize patterns of hyper- or hypoglycemia. The goals of intensive management are age dependent. In young children, avoidance of severe hypoglycemia is the major goal. In older children and adolescents, lowering hemoglobin A1c becomes an increasingly important goal. In children of all ages, the ability to have a flexible lifestyle and meal plan is often a priority. This article provides a brief overview of the rationale for implementing intensive diabetes management in pediatric patients, and practical guidelines for implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. DCCT Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993, 329:977–986.

    Article  Google Scholar 

  2. Tamborlane WV, Ahern J: Implications and results of the Diabetes Control and Complications Trial. Pediatr Clin North Am 1997, 44:285–300.

    Article  PubMed  CAS  Google Scholar 

  3. Brink SJ: How to apply the experience from the diabetes control and complications trial to children and adolescents? Ann Med 1997, 29:425–438.

    PubMed  CAS  Google Scholar 

  4. Kostraba JN, Dorman JS, Orchard TJ, et al.: Contribution of diabetes duration before puberty to development of microvascular complications in IDDM subjects. Diabetes Care 1989, 12:686–693.

    Article  PubMed  CAS  Google Scholar 

  5. Burger W, Hovener G, Dusterhus R, et al.: Prevalence and development of retinopathy in children and adolescents with type 1 (insulin-dependent) diabetes mellitus: a longitudinal study. Diabetologia 1986, 29:17–22.

    Article  PubMed  CAS  Google Scholar 

  6. Holl RW, Lang GE, Grabert M, et al.: Diabetic retinopathy in pediatric patients with type-1 diabetes: effect of diabetes duration, prepubertal and pubertal onset of diabetes, and metabolic control. J Pediatr 1998, 132:790–794. Stresses the importance of the prepubertal and pubertal duration of diabetes on the development of diabetic retinopathy.

    Article  PubMed  CAS  Google Scholar 

  7. Donaghue KC, Fung AT, Hing S, et al.: The effect of prepubertal diabetes duration on diabetes: microvascular complications in early and late adolescence. Diabetes Care 1997, 20:77–80.

    Article  PubMed  CAS  Google Scholar 

  8. Brownlee M, Cerami A, Vlassara H: Advanced glycosylation end-products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988, 318:1315–1322.

    Article  PubMed  CAS  Google Scholar 

  9. Williamson JR, Rowold E, Chang K, et al.: Sex steroid dependency of diabetes-induced changes in polyol metabolism, vascular permeability, and collagen crosslinking. Diabetes 1986, 35:20–27.

    Article  PubMed  CAS  Google Scholar 

  10. Ryan C: Cognitive deficits in adolescents who developed diabetes early in life. Pediatrics 1985, 75:921–927.

    PubMed  CAS  Google Scholar 

  11. Bjorgaas M: Cognitive function in type 1 diabetic children with and without episodes of severe hypoglycaemia. Acta Paediatr 1997, 86:148–153.

    PubMed  CAS  Google Scholar 

  12. Kaufman FR, Epport K, Engilman R, Halvorson M: Neurocognitive functioning in children diagnosed with diabetes before age 10 years. J Diabetes Complications 1999, 13:31–38.

    Article  PubMed  CAS  Google Scholar 

  13. Hershey T: Conventional versus intensive diabetes therapy in children with type 1 diabetes: effects on memory and motor speed. Diabetes Care 1999, 22:1318–1324. Highlights the very high incidence of nocturnal hypoglycemia in children on conventional insulin treatment.

    Article  PubMed  CAS  Google Scholar 

  14. Beregszaszi M: Nocturnal hypoglycemia in children and adolescents with insulin-dependent diabetes mellitus: prevalence and risk factors. J Pediatr 1997, 131:27–33.

    Article  PubMed  CAS  Google Scholar 

  15. Porter PA: Incidence and predictive criteria of nocturnal hypoglycemia in young children with insulin-dependent diabetes mellitus. J Pediatr 1997, 130:366–372.

    Article  PubMed  CAS  Google Scholar 

  16. Boland EA, DeLucia M, Brandt CA, et al.: Limitations of conventional methods of self blood glucose monitoring: lessons learned from three days of continuous glucose monitoring (CGMS) in pediatric patients with type 1 diabetes. Diabetes 2000, 49(suppl 1):397.

    Google Scholar 

  17. Detlofson I, Kroon M, Aman J: Oral bedtime cornstarch supplementation reduces the risk for nocturnal hypoglycaemia in young children with type 1 diabetes. Acta Paediatr 1999, 88:595–597.

    Article  PubMed  CAS  Google Scholar 

  18. Kaufman FR, Devgan S: Use of uncooked cornstarch to avert nocturnal hypoglycemia in children and adolescents with type I diabetes. J Diabetes Complications 1996, 10:84–87.

    Article  PubMed  CAS  Google Scholar 

  19. Campbell PJ, Bolli GB, Cryer PE, Gerich JE: Pathogenesis of the dawn phenomenon in patients with insulin-dependent diabetes mellitus: accelerated glucose production and impaired glucose utilization due to nocturnal surges in growth hormone secretion. N Engl J Med 1985, 312:1473–1479.

    Article  PubMed  CAS  Google Scholar 

  20. Perriello G, De Feo P, Torlone E, et al.: Nocturnal spikes of growth hormone secretion cause the dawn phenomenon in type 1 (insulin-dependent) diabetes mellitus by decreasing hepatic (and extrahepatic) sensitivity to insulin in the absence of insulin waning. Diabetologia 1990, 33:52–59.

    Article  PubMed  CAS  Google Scholar 

  21. Adlard P, Buzi F, Jones J, et al.: Physiological growth hormone secretion during slow-wave sleep in short prepubertal children. Clin Endocrinol (Oxf) 1987, 27:355–361.

    CAS  Google Scholar 

  22. Hasegawa T, Hasegawa Y, Yokoyama T, et al.: Spontaneous growth hormone secretion in healthy prepubertal children of normal stature. Endocrinol Jpn 1992, 39:9–12.

    PubMed  CAS  Google Scholar 

  23. MacGorman LR, Rizza RA, Gerich JE: Physiological concentrations of growth hormone exert insulin-like and insulin antagonistic effects on both hepatic and extrahepatic tissues in man. J Clin Endocrinol Metab 1981, 53:556–559.

    PubMed  CAS  Google Scholar 

  24. American Diabetes Association: Care of children with diabetes in the school and day care setting. Diabetes Care 2000, 23(suppl 1):S100-S103. This is an excellent guide for health care professionals, parents, and school personnel for dealing with diabetes-related issues at school. It strongly supports the rights of the child with diabetes to have fair treatment and the necessary supervision to ensure that the school or daycare setting is safe.

    Google Scholar 

  25. Anderson EJ, Richardson M, Castle G, et al.: Nutrition interventions for intensive therapy in the Diabetes Control and Complications Trial: the DCCT Research Group. J Am Diet Assoc 1993, 93:768–772.

    Article  PubMed  CAS  Google Scholar 

  26. Delahanty LM, Halford BN: The role of diet behaviors in achieving improved glycemic control in intensively treated patients in the Diabetes Control and Complications Trial. Diabetes Care 1993, 16:1453–1458.

    Article  PubMed  CAS  Google Scholar 

  27. Davidson PC: Bolus and supplemental insulin. In The Insulin Pump Therapy Book: Insights from the Experts. Edited by Frederickson L. Sylmar: MiniMed Technologies; 1995:59–71.

    Google Scholar 

  28. Binder C, Lauritzen T, Faber O, Pramming S: Insulin pharmacokinetics. Diabetes Care 1984, 7:188–199.

    Article  PubMed  Google Scholar 

  29. Galloway JA, Spradlin CT, Nelson RL, et al.: Factors influencing the absorption, serum insulin concentration, and blood glucose responses after injections of regular insulin and various insulin mixtures. Diabetes Care 1981, 4:366–376.

    Article  PubMed  CAS  Google Scholar 

  30. Garg SK, Carmain JA, Braddy KC, et al.: Pre-meal insulin analogue insulin lispro versus Humulin R insulin treatment in young subjects with type 1 diabetes. Diabet Med 1996, 13:47–52.

    Article  PubMed  CAS  Google Scholar 

  31. Pfutzner A, Kustner E, Forst T, et al.: Intensive insulin therapy with insulin lispro in patients with type 1 diabetes reduces the frequency of hypoglycemic episodes. Exp Clin Endocrinol Diabetes 1996, 104:25–30.

    Article  PubMed  CAS  Google Scholar 

  32. Rutledge KS, Chase HP, Klingensmith GJ, et al.: Effectiveness of postprandial Humalog in toddlers with diabetes. Pediatrics 1997, 100:968–972.

    Article  PubMed  CAS  Google Scholar 

  33. Burge MR, Waters DL, Holcombe JH, Schade DS: Prolonged efficacy of short acting insulin Lispro in combination with human ultralente in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1997, 82:920–924.

    Article  PubMed  CAS  Google Scholar 

  34. Starke AA, Heinemann L, Hohmann A, Berger M: The action profiles of human NPH insulin preparations. Diabet Med 1989, 6:239–244.

    PubMed  CAS  Google Scholar 

  35. Hirsch IB: Intensive treatment of type 1 diabetes. Med Clin North Am 1998, 82:689–719. An excellent overview of intensive diabetes management in adults.

    Article  PubMed  CAS  Google Scholar 

  36. Heinemann L, Linkeschova R, Rave K, et al.: Time-action profile of the long-acting insulin analog insulin glargine (HOE901) in comparison with those of NPH insulin and placebo. Diabetes Care 2000, 23:644–649.

    Article  PubMed  CAS  Google Scholar 

  37. Francis AJ, Home PD, Hanning I, et al.: Intermediate acting insulin given at bedtime: effect on blood glucose concentrations before and after breakfast. BMJ 1983, 286:1173–1176.

    PubMed  CAS  Google Scholar 

  38. Holl RW, Teller WM, Heinze E: Semilente-insulin at bedtime is superior to NPH-insulin for the suppression of the dawn-phenomenon in adolescents with type-I-diabetes. Exp Clin Endocrinol Diabetes 1996, 104:360–364.

    Article  PubMed  CAS  Google Scholar 

  39. Heinemann L, Richter B: Clinical pharmacology of human insulin. Diabetes Care 1993, 16(suppl 3):90–100.

    PubMed  Google Scholar 

  40. Freeman SL, O’Brien PC, Rizza RA: Use of human ultralente as the basal insulin component in treatment of patients with IDDM. Diabetes Res Clin Pract 1991, 12:187–192.

    Article  PubMed  CAS  Google Scholar 

  41. Holman RR, Steemson J, Darling P, et al.: Human ultralente insulin. BMJ 1984, 288:665–668.

    Article  PubMed  CAS  Google Scholar 

  42. Fisken RA, Goulbourn J: Treatment of insulin-dependent diabetes using an injection pen: control, problems and patient preferences. Diabetes Res 1989, 11:195–197.

    PubMed  CAS  Google Scholar 

  43. Ahern JA: Insulin pump therapy for kids. Diabetes Self Manage 2000, Jan/Feb:74–78.

  44. Brambilla P, Artavia-Loria E, Chaussain JL, Bougneres PF: Risk of ketosis during intensive insulin therapy in preschool- age diabetic children. Diabetes Care 1987, 10:44–48.

    Article  PubMed  CAS  Google Scholar 

  45. Kaufman FR, Halvorson M, Kim C, Pitukcheewanont P: Use of insulin pump therapy at nighttime only for children 7-10 years of age with type 1 diabetes. Diabetes Care 2000, 23:579–582.

    Article  PubMed  CAS  Google Scholar 

  46. Bell DS, Ovalle F: Improved glycemic control with use of continuous subcutaneous insulin infusion compared with multiple insulin injection therapy. Endocr Pract 2000, 6:357–360.

    PubMed  CAS  Google Scholar 

  47. Boland EA, Grey M, Oesterle A, et al.: Continuous subcutaneous insulin infusion: a new way to lower risk of severe hypoglycemia, improve metabolic control, and enhance coping in adolescents with type 1 diabetes. Diabetes Care 1999, 22:1779–1784. Compares the benefits and risks of CSII and MDI in 75 diabetic adolescents. CSII and MDI patients both had improved quality-of-life scores and less depression; however, those using CSII found coping with diabetes to be less difficult.

    Article  PubMed  CAS  Google Scholar 

  48. Lepore M, Pampanelli S, Fanelli C, et al.: Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. Diabetes 2000, 49:2142–2148.

    Article  PubMed  CAS  Google Scholar 

  49. Pieber TR, Eugene-Jolchine I, Derobert E: Efficacy and safety of HOE 901 versus NPH insulin in patients with type 1 diabetes: the European Study Group of HOE 901 in type 1 diabetes. Diabetes Care 2000, 23:157–162.

    Article  PubMed  CAS  Google Scholar 

  50. Ratner RE, Hirsch IB, Neifing JL, et al.: Less hypoglycemia with insulin glargine in intensive insulin therapy for type 1 diabetes: US Study Group of Insulin Glargine in Type 1 Diabetes. Diabetes Care 2000, 23:639–643.

    Article  PubMed  CAS  Google Scholar 

  51. Yki-Jarvinen H, Dressler A, Ziemen M: Less nocturnal hypoglycemia and better post-dinner glucose control with bedtime insulin glargine compared with bedtime NPH insulin during insulin combination therapy in type 2 diabetes: HOE 901/3002 Study Group. Diabetes Care 2000, 23:1130–1136.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckingham, B., Bluck, B. & Wilson, D.M. Intensive diabetes management in pediatric patients. Curr Diab Rep 1, 11–18 (2001). https://doi.org/10.1007/s11892-001-0005-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-001-0005-y

Keywords

Navigation