Skip to main content
Log in

Is Timing Important? The Role of Diet and Lifestyle During Early Life on Colorectal Neoplasia

  • Nutrition and Nutritional Interventions in Colorectal Cancer (K Wu, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Purpose of the Review

To summarize the current evidence on the most important dietary and lifestyle factors in colorectal carcinogenesis during different stages of a lifetime with special emphasis on studies investigating exposure during childhood, adolescence, and young adulthood.

Recent Findings

A number of studies showed that independent of adult obesity, higher body fatness during childhood, adolescence, and young adulthood is associated with risk of colorectal cancer later in life. In one large cohort study, the Nurses’ Health Study II, adherence to a western pattern diet was associated with higher risk of advanced adenoma. The current evidence relating consumption of individual foods and nutrients as well as physical activity during early life to colorectal cancer is sparse and less consistent, at least in part due to limitations in study design, such as sample size, limited data on potential confounders or lack of a validated dietary assessment instrument.

Summary

As colorectal carcinogenesis is a long process and can take up to several decades to develop, early life risk factors may also be etiologically relevant. The recent rise in early-onset colorectal cancer incidence and mortality in the USA, i.e., in individuals younger than 55 years at diagnosis, strongly supports that early life risk factors may influence colorectal carcinogenesis. Considering that the majority of colorectal cancers are preventable, there is an urgent need for well-designed investigations on the role of diet and lifestyle factors throughout the life course and risk of colorectal cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hughes LA, van den Brandt PA, Goldbohm RA, de Goeij AF, de Bruine AP, van Engeland M, et al. Childhood and adolescent energy restriction and subsequent colorectal cancer risk: results from the Netherlands Cohort Study. Int J Epidemiol. 2010;39(5):1333–44. https://doi.org/10.1093/ije/dyq062.

    Article  PubMed  Google Scholar 

  2. Uauy R, Solomons N. Diet, nutrition, and the life-course approach to cancer prevention. J Nutr. 2005;135(12 Suppl):2934S–45S.

    Article  CAS  PubMed  Google Scholar 

  3. Smith CP, Dunger DB, Williams AJ, et al. Relationship between insulin, insulin-like growth factor I, and dehydroepiandrosterone sulfate concentrations during childhood, puberty, and adult life. J Clin Endocrinol Metab. 1989;68(5):932–7. https://doi.org/10.1210/jcem-68-5-932.

    Article  CAS  PubMed  Google Scholar 

  4. Bloch CA, Clemons P, Sperling MA. Puberty decreases insulin sensitivity. J Pediatr. 1987;110(3):481–7. https://doi.org/10.1016/S0022-3476(87)80522-X.

    Article  CAS  PubMed  Google Scholar 

  5. Caprio S, Plewe G, Diamond MP, Simonson DC, Boulware SD, Sherwin RS, et al. Increased insulin secretion in puberty: a compensatory response to reductions in insulin sensitivity. J Pediatr. 1989;114(6):963–7. https://doi.org/10.1016/S0022-3476(89)80438-X.

    Article  CAS  PubMed  Google Scholar 

  6. Siegel RL, Miller KD, Jemal A. Colorectal cancer mortality rates in adults aged 20 to 54 years in the United States, 1970–2014. JAMA. 2017;318(6):572–4. https://doi.org/10.1001/jama.2017.7630.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Siegel RL, Fedewa SA, Anderson WF, Miller KD, Ma J, Rosenberg PS, et al. Colorectal cancer incidence patterns in the United States, 1974–2013. J Natl Cancer Inst. 2017;109(8):djw322-djw. https://doi.org/10.1093/jnci/djw322.

    Google Scholar 

  8. Mahabir S, Aagaard K, Anderson LM, Herceg Z, Hiatt RA, Hoover RN, et al. Challenges and opportunities in research on early-life events/exposures and cancer development later in life. Cancer Causes Control. 2012;23(6):983–90. https://doi.org/10.1007/s10552-012-9962-5.

    Article  PubMed  Google Scholar 

  9. Nimptsch K, Bernstein AM, Giovannucci E, Fuchs CS, Willett WC, Wu K. Dietary intakes of red meat, poultry, and fish during high school and risk of colorectal adenomas in women. Am J Epidemiol. 2013;178(2):172–83. https://doi.org/10.1093/aje/kwt099.

    Article  PubMed  PubMed Central  Google Scholar 

  10. • Nimptsch K, Malik VS, Fung TT, Pischon T, Hu FB, Willett WC, et al. Dietary patterns during high school and risk of colorectal adenoma in a cohort of middle-aged women. Int J Cancer. 2014;134(10):2458–67. https://doi.org/10.1002/ijc.28578. Study showing that independent of dietary pattern during adulthood, overall dietary patterns during adolescence are related to later risk of colorectal adenoma. Estimates were adjusted for important potentially confounding factors.

    Article  CAS  PubMed  Google Scholar 

  11. Ruder EH, Thiebaut AC, Thompson FE, Potischman N, Subar AF, Park Y, et al. Adolescent and mid-life diet: risk of colorectal cancer in the NIH-AARP Diet and Health Study. Am J Clin Nutr. 2011;94(6):1607–19. https://doi.org/10.3945/ajcn.111.020701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liang PS, Chen TY, Giovannucci E. Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int J Cancer. 2009;124(10):2406–15. https://doi.org/10.1002/ijc.24191.

    Article  CAS  PubMed  Google Scholar 

  13. Song X, Gong X, Zhang T, Jiang W. Height and risk of colorectal cancer: a meta-analysis. Eur J Cancer Prev. 2017:1. https://doi.org/10.1097/cej.0000000000000390.

  14. World Cancer Research Fund, American Institute for Cancer Research. Continuous Update Project Report: Diet, Nutrition, Physical Activity and Colorectal Cancer. 2017. World Cancer Research Fund/American Institute for Cancer Research. Available at http://www.wcrf.org/colorectal-cancer-2017; Last accessed 10/13/2017, Washington, D.C. 2017.

  15. Giovannucci E. Modifiable risk factors for colon cancer. Gastroenterol Clin N Am. 2002;31(4):925–43. https://doi.org/10.1016/S0889-8553(02)00057-2.

    Article  Google Scholar 

  16. Giovannucci E. Diet, body weight, and colorectal cancer: a summary of the epidemiologic evidence. J Women's Health (Larchmt). 2003;12(2):173–82. https://doi.org/10.1089/154099903321576574.

    Article  Google Scholar 

  17. Pisani P. Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies. Arch Physiol Biochem. 2008;114(1):63–70. https://doi.org/10.1080/13813450801954451.

    Article  CAS  PubMed  Google Scholar 

  18. Rinaldi S, Cleveland R, Norat T, Biessy C, Rohrmann S, Linseisen J, et al. Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies. Int J Cancer. 2010;126(7):1702–15. https://doi.org/10.1002/ijc.24927.

    CAS  PubMed  Google Scholar 

  19. Tsilidis KK, Branchini C, Guallar E, Helzlsouer KJ, Erlinger TP, Platz EA. C-reactive protein and colorectal cancer risk: a systematic review of prospective studies. Int J Cancer. 2008;123(5):1133–40. https://doi.org/10.1002/ijc.23606.

    Article  CAS  PubMed  Google Scholar 

  20. Aleksandrova K, Boeing H, Jenab M, Bueno-de-Mesquita HB, Jansen E, van Duijnhoven FJB, et al. Total and high-molecular weight adiponectin and risk of colorectal cancer: the European Prospective Investigation into Cancer and Nutrition Study. Carcinogenesis. 2012;33(6):1–8. https://doi.org/10.1093/carcin/bgs133.

    Article  CAS  Google Scholar 

  21. Cali AM, Caprio S. Obesity in children and adolescents. J Clin Endocrinol Metab. 2008;93(11 Suppl 1):S31–6. https://doi.org/10.1210/jc.2008-1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei EK, Wolin KY, Colditz GA. Time course of risk factors in cancer etiology and progression. J Clin Oncol. 2010;28(26):4052–7. https://doi.org/10.1200/JCO.2009.26.9324.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Harriss DJ, Atkinson G, George K, Tim Cable N, Reilly T, Haboubi N, et al. Lifestyle factors and colorectal cancer risk (1): systematic review and meta-analysis of associations with body mass index. Color Dis. 2009;11(6):547–63. https://doi.org/10.1111/j.1463-1318.2009.01766.x.

    Article  CAS  Google Scholar 

  24. Caprio S, Hyman LD, Limb C, et al. Central adiposity and its metabolic correlates in obese adolescent girls. Am J Phys. 1995;269(1 Pt 1):E118–26.

    CAS  Google Scholar 

  25. •• Kantor ED, Udumyan R, Signorello LB, Giovannucci EL, Montgomery S, Fall K. Adolescent body mass index and erythrocyte sedimentation rate in relation to colorectal cancer risk. Gut. 2016;65(8):1289–95. https://doi.org/10.1136/gutjnl-2014-309007. Recent comprehensive analysis on measured body mass index during adolescence and colorectal cancer risk in almost 240,000 Swedish men. Upper overweight and obesity during adolescence was associated with a more than twofold higher risk of colorectal cancer.

  26. • Zhang X, Wu K, Giovannucci EL, Ma J, Colditz GA, Fuchs CS, et al. Early life body fatness and risk of colorectal cancer in US women and men—results from two large cohort studies. Cancer Epidemiol Biomark Prev. 2015;24(4):690–7. https://doi.org/10.1158/1055-9965.EPI-14-0909-T. Analysis from two large prospective cohorts relating recalled body shape during childhood and adolescence to later risk of colorectal cancer with the ability to adjust for important potentially confounding factors and adult body mass index. High body fatness during childhood or adolescence was associated with higher colorectal cancer risk independent of adult body mass index in women but not in men.

    Article  CAS  Google Scholar 

  27. Han X, Stevens J, Truesdale KP, Bradshaw PT, Kucharska-Newton A, Prizment AE, et al. Body mass index at early adulthood, subsequent weight change and cancer incidence and mortality. Int J Cancer. 2014;135(12):2900–9. https://doi.org/10.1002/ijc.28930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gray L, Lee IM, Sesso HD, Batty GD. Association of body mass index in early adulthood and middle age with future site-specific cancer mortality: the Harvard Alumni Health Study. Ann Oncol. 2012;23(3):754–9. https://doi.org/10.1093/annonc/mdr270.

    Article  CAS  PubMed  Google Scholar 

  29. Levi Z, Kark JD, Barchana M, Liphshitz I, Zavdi O, Tzur D, et al. Measured body mass index in adolescence and the incidence of colorectal cancer in a cohort of 1.1 million males. Cancer Epidemiol Biomark Prev. 2011;20(12):2524–31. https://doi.org/10.1158/1055-9965.EPI-11-0531.

    Article  Google Scholar 

  30. Nimptsch K, Giovannucci E, Willett WC, Fuchs CS, Wei EK, Wu K. Body fatness during childhood and adolescence, adult height, and risk of colorectal adenoma in women. Cancer Prev Res (Phila). 2011;4(10):1710–8. https://doi.org/10.1158/1940-6207.CAPR-11-0272.

    Article  Google Scholar 

  31. Burton A, Martin R, Galobardes B, Davey Smith G, Jeffreys M. Young adulthood body mass index and risk of cancer in later adulthood: historical cohort study. Cancer Causes Control. 2010;21(12):2069–77. https://doi.org/10.1007/s10552-010-9625-3.

    Article  PubMed  Google Scholar 

  32. Bjorge T, Engeland A, Tverdal A, Smith GD. Body mass index in adolescence in relation to cause-specific mortality: a follow-up of 230,000 Norwegian adolescents. Am J Epidemiol. 2008;168(1):30–7. https://doi.org/10.1093/aje/kwn096.

    Article  PubMed  Google Scholar 

  33. Jeffreys M, Smith GD, Martin RM, Frankel S, Gunnell D. Childhood body mass index and later cancer risk: a 50-year follow-up of the Boyd Orr study. Int J Cancer. 2004;112(2):348–51. https://doi.org/10.1002/ijc.20423.

    Article  CAS  PubMed  Google Scholar 

  34. Must A, Jacques PF, Dallal GE, Bajema CJ, Dietz WH. Long-term morbidity and mortality of overweight adolescents. A follow-up of the Harvard Growth Study of 1922 to 1935. N Engl J Med. 1992;327(19):1350–5. https://doi.org/10.1056/NEJM199211053271904.

    Article  CAS  PubMed  Google Scholar 

  35. Le Marchand L, Wilkens LR, Mi MP. Obesity in youth and middle age and risk of colorectal cancer in men. Cancer Causes Control. 1992;3(4):349–54. https://doi.org/10.1007/BF00146888.

    Article  PubMed  Google Scholar 

  36. Cunningham SA, Kramer MR, Narayan KM. Incidence of childhood obesity in the United States. N Engl J Med. 2014;370(5):403–11. https://doi.org/10.1056/NEJMoa1309753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stunkard AJ, Sorensen T, Schulsinger F. Use of the Danish Adoption Register for the study of obesity and thinness. In: Kety SS, Rowland LP, Sidman SQ, Mathysee SW, editors. The genetics of neurological and psychiatric disorders. New York City: Raven Press; 1983. p. 115–20.

    Google Scholar 

  38. Must A, Willett WC, Dietz WH. Remote recall of childhood height, weight, and body build by elderly subjects. Am J Epidemiol. 1993;138(1):56–64. https://doi.org/10.1093/oxfordjournals.aje.a116777.

    Article  CAS  PubMed  Google Scholar 

  39. Leslie A, Carey FA, Pratt NR, Steele RJ. The colorectal adenoma-carcinoma sequence. Br J Surg. 2002;89(7):845–60. https://doi.org/10.1046/j.1365-2168.2002.02120.x.

    Article  CAS  PubMed  Google Scholar 

  40. Wolin KY, Yan Y, Colditz GA, Lee IM. Physical activity and colon cancer prevention: a meta-analysis. Br J Cancer. 2009;100(4):611–6. https://doi.org/10.1038/sj.bjc.6604917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wolin KY, Yan Y, Colditz GA. Physical activity and risk of colon adenoma: a meta-analysis. Br J Cancer. 2011;104(5):882–5. https://doi.org/10.1038/sj.bjc.6606045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee IM, Paffenbarger RS Jr, Hsieh C. Physical activity and risk of developing colorectal cancer among college alumni. J Natl Cancer Inst. 1991;83(18):1324–9. https://doi.org/10.1093/jnci/83.18.1324.

    Article  CAS  PubMed  Google Scholar 

  43. Levi F, Pasche C, Lucchini F, Tavani A, La Vecchia C. Occupational and leisure-time physical activity and the risk of colorectal cancer. Eur J Cancer Prev. 1999;8(6):487–93. https://doi.org/10.1097/00008469-199912000-00003.

    Article  CAS  PubMed  Google Scholar 

  44. Tavani A, Braga C, La Vecchia C, et al. Physical activity and risk of cancers of the colon and rectum: an Italian case-control study. Br J Cancer. 1999;79(11–12):1912–6. https://doi.org/10.1038/sj.bjc.6690304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Svensson E, Moller B, Tretli S, et al. Early life events and later risk of colorectal cancer: age-period-cohort modelling in the Nordic countries and Estonia. Cancer Causes Control. 2005;16(3):215–23. https://doi.org/10.1007/s10552-004-3073-x.

    Article  CAS  PubMed  Google Scholar 

  46. Hughes LA, van den Brandt PA, de Bruine AP, et al. Early life exposure to famine and colorectal cancer risk: a role for epigenetic mechanisms. PLoS One. 2009;4(11):e7951. https://doi.org/10.1371/journal.pone.0007951.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16(16):1599–600. https://doi.org/10.1016/s1470-2045(15)00444-1.

    Article  PubMed  Google Scholar 

  48. Chan DS, Lau R, Aune D, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS One. 2011;6(6):e20456. https://doi.org/10.1371/journal.pone.0020456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aune D, Chan DS, Vieira AR, et al. Red and processed meat intake and risk of colorectal adenomas: a systematic review and meta-analysis of epidemiological studies. Cancer Causes Control. 2013;24(4):611–27. https://doi.org/10.1007/s10552-012-0139-z.

    Article  PubMed  Google Scholar 

  50. Bastide NM, Pierre FH, Corpet DE. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila). 2011;4(2):177–84. https://doi.org/10.1158/1940-6207.CAPR-10-0113.

    Article  CAS  Google Scholar 

  51. Cross AJ, Ferrucci LM, Risch A, Graubard BI, Ward MH, Park Y, et al. A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res. 2010;70(6):2406–14. https://doi.org/10.1158/0008-5472.CAN-09-3929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cross AJ, Pollock JR, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003;63(10):2358–60.

    CAS  PubMed  Google Scholar 

  53. Ruder EH, Thiebaut AC, Thompson FE, Potischman N, Subar AF, Park Y, et al. Adolescent and mid-life diet: risk of colorectal cancer in the NIH-AARP Diet and Health Study. Am J Clin Nutr. 2011;94(6):1607–19. https://doi.org/10.3945/ajcn.111.020701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van der Pols JC, Bain C, Gunnell D, Smith GD, Frobisher C, Martin RM. Childhood dairy intake and adult cancer risk: 65-y follow-up of the Boyd Orr cohort. Am J Clin Nutr. 2007;86(6):1722–9.

    Article  PubMed  Google Scholar 

  55. Nimptsch K, Bernstein AM, Giovannucci E, Fuchs CS, Willett WC, Wu K. Dietary intakes of red meat, poultry, and fish during high school and risk of colorectal adenomas in women. Am J Epidemiol. 2013;178(2):172–83. https://doi.org/10.1093/aje/kwt099.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Maruti SS, Feskanich D, Colditz GA, et al. Adult recall of adolescent diet: reproducibility and comparison with maternal reporting. Am J Epidemiol. 2005;161(1):89–97. https://doi.org/10.1093/aje/kwi019.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Maruti SS, Feskanich D, Rockett HR, Colditz GA, Sampson LA, Willett WC. Validation of adolescent diet recalled by adults. Epidemiology. 2006;17(2):226–9. https://doi.org/10.1097/01.ede.0000198181.86685.49.

    Article  PubMed  Google Scholar 

  58. World Cancer Research Fund / American Institute for Cancer Research. Continuous Update Project Report. Food, nutrition, physical activity, and the prevention of colorectal cancer. Washington, DC. 2011.

  59. Aune D, Chan DS, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011;343(nov10 1):d6617. https://doi.org/10.1136/bmj.d6617.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ben Q, Sun Y, Chai R, Qian A, Xu B, Yuan Y. Dietary fiber intake reduces risk for colorectal adenoma: a meta-analysis. Gastroenterology. 2014;146(3):689–99 e6. https://doi.org/10.1053/j.gastro.2013.11.003.

    Article  CAS  PubMed  Google Scholar 

  61. Slavin JL. Mechanisms for the impact of whole grain foods on cancer risk. J Am Coll Nutr. 2000;19(3 Suppl):300S–7S. https://doi.org/10.1080/07315724.2000.10718964.

    Article  CAS  PubMed  Google Scholar 

  62. Lipkin M, Reddy B, Newmark H, Lamprecht SA. Dietary factors in human colorectal cancer. Annu Rev Nutr. 1999;19(1):545–86. https://doi.org/10.1146/annurev.nutr.19.1.545.

    Article  CAS  PubMed  Google Scholar 

  63. Aune D, Lau R, Chan DS, et al. Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol. 2012;23(1):37–45. https://doi.org/10.1093/annonc/mdr269.

    Article  CAS  PubMed  Google Scholar 

  64. Cho E, Smith-Warner SA, Spiegelman D, et al. Dairy foods, calcium, and colorectal cancer: a pooled analysis of 10 cohort studies. J Natl Cancer Inst. 2004;96(13):1015–22. https://doi.org/10.1093/jnci/djh185.

    Article  CAS  PubMed  Google Scholar 

  65. Lamprecht SA, Lipkin M. Cellular mechanisms of calcium and vitamin D in the inhibition of colorectal carcinogenesis. Ann N Y Acad Sci. 2001;952(1):73–87. https://doi.org/10.1111/j.1749-6632.2001.tb02729.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This article was supported in part by grants from the National Institutes of Health (R03CA197879) and the American Institute for Cancer Research to Dr. Kana Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Nimptsch.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nutrition and Nutritional Interventions in Colorectal Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimptsch, K., Wu, K. Is Timing Important? The Role of Diet and Lifestyle During Early Life on Colorectal Neoplasia. Curr Colorectal Cancer Rep 14, 1–11 (2018). https://doi.org/10.1007/s11888-018-0396-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-018-0396-7

Keywords

Navigation