Skip to main content

Advertisement

Log in

Resistance Mechanisms to Colorectal Cancer Therapeutics and the Clinical Implications

  • Basic Science Foundations in Colorectal Cancer (J Roper, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Purpose of Review

Colorectal cancer (CRC) is a leading cause of cancer-related death and additional treatment options are urgently needed. Cytotoxic chemotherapy has been the mainstay of treatment options for patients for many years, including FOLFOX (leucovorin, 5-fluorouracil (5-FU), and oxaliplatin) or FOLFIRI (5-FU, leucovorin, and irinotecan) Here we review the current clinical use of systemic therapies for metastatic CRC and mechanisms of resistance to these agents.

Recent Findings

Biologic therapies, including anti-angiogenic and anti-epidermal growth factor monoclonal antibodies, have shown increased efficacy for patients with metastatic CRC. Most recently, immunotherapies have also been an option for some patients.

Summary

Identification of molecular markers predictive of response or resistance has led to enhanced ability to treat patients with metastatic CRC in a more personalized fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Marley AR, Nan H. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet. 2016;7(3):105–14.

    PubMed  PubMed Central  Google Scholar 

  2. Laufman L, Bukowski RM, Collier MA, et al. A randomized double-blind trial of fluorouracil plus placebo versus fluorouracil plus oral leucovorin in patients with metastatic colorectal cancer. J Clin Oncol. 1993;11(10):1888.

    Article  CAS  PubMed  Google Scholar 

  3. Venook A, Niedzwiecki D, Lenz HJ, et al. CALGB/SWOG 80405: phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). J Clin Oncol. 2017;32:5s (suppl; abstr LBA3).

  4. Heidelberger C, Chaudhuri NK, Danenberg PV, et al. Fluorinated pyrimidines: a new class of tumor inhibitory compounds. Nature. 1957;179:663.

    Article  CAS  PubMed  Google Scholar 

  5. de Gramont A, Bosset JF, Milan C, et al. Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a French intergroup study. J Clin Oncol. 1997;15(2):808.

    Article  PubMed  Google Scholar 

  6. Van Kuilenburg ABP. Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur J Cancer. 2004;40(7):939–50.

    Article  PubMed  Google Scholar 

  7. Parker WB, Cheng YC. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol Ther. 1990;48:381–95.

    Article  CAS  PubMed  Google Scholar 

  8. Salonga D, Danenberg KD, Johnson MR, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 2000;6:1322–7.

    CAS  PubMed  Google Scholar 

  9. Leichman CG, Lenz HJ, Leichman L, et al. Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. J Clin Oncol. 1997;15:3223–9.

    Article  CAS  PubMed  Google Scholar 

  10. Lacopetta B, Grieu F, Joseph D, Elsaleh H. A polymorphism in the enhancer region of the thymidylate synthase promoter influences the survival of colorectal cancer patients treated with 5-fluorouracil. Br J Cancer. 2001;85:827–30.

    Article  Google Scholar 

  11. Wei X, Wang W, Wang L, Zhang Y, Zhang X, Chen M, et al. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDC. Cancer Med. 2016;5(4):693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomimaru Y, Eguchi H, Nagano H, Wada H, Tomokuni A, Kobayashi S, et al. MicroRNA-21 induces resistance to the anti-tumour effect of interferon-α/5-fluorouracil in hepatocellular carcinoma cells. Br J Cancer. 2010;103(10):1617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci USA. 2010;107(49):21098–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tournigand C, Andre T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2004;22(2):229.

    Article  CAS  PubMed  Google Scholar 

  15. Woynarowski JM, Faivre S, Herzig MC, Arnett B, Chapman WG, Trevino AV, et al. Oxaliplatin-induced damage of cellular DNA. Mol Pharm. 2000;58(5):920–7.

    CAS  Google Scholar 

  16. Bruno PM, Liu Y, Park GY, Murai J, Koch CE, Eisen TJ, et al. A supset of platinum-containing chemotherapeutic agents kill cells by inducing ribosome biogenesis stress. Nat Med. doi:10.1038/nm.4291.

  17. Arnould S, Hennebelle I, Canal P, Bugat R, Guichard S. Cellular determinants of oxaliplatin sensitivity in colon cancer cell lines. Eur J Cancer. 2003;39(1):112–9.

    Article  CAS  PubMed  Google Scholar 

  18. Lenz HJ, Lee FC, Yau L, et al. MAVERICC, a phase 2 study of mFOLFOX6-bevacizumab (BV) vs FOLFIRI-BV with biomarker stratification as first-line (1L) chemotherapy (CT) in patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol. 2016;34:(suppl 4S; abstr 493).

  19. Martinez-Balibrea E, et al. Tumor-related molecular mechanisms of oxaliplatin resistance. Mol Cancer Ther. 2015;14(8):1767–76.

    Article  CAS  PubMed  Google Scholar 

  20. Samimi G, Katano K, Holzer AK, Safaei R, Howell SB. Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B. Mol Pharmacol. 2004;66:25–32.

    Article  CAS  PubMed  Google Scholar 

  21. Plasencia C, Martinez-Balibrea E, Martinez-Cardus A, Quinn DI, Abad A, Neamati N. Expression analysis of genes involved in oxaliplatin response and development of oxaliplatin-resistant HT29 colon cancer cells. Int J Oncol. 2006;29:225–35.

    CAS  PubMed  Google Scholar 

  22. Martinez-Balibrea E, Martinez-Cardus A, Musulen E, Gines A, Manzano JL, Aranda E, et al. Increased levels of copper efflux transporter ATP7B are associated with poor outcome in colorectal cancer patients receiving oxaliplatin-based chemotherapy. Int J Cancer. 2009;124:2905–10.

    Article  CAS  PubMed  Google Scholar 

  23. Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17:421–33.

    Article  CAS  PubMed  Google Scholar 

  24. Pommier Y. DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem Rev. 2009;109:2894–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Andre T, Louvet C, Maindrault-Goebel F, et al. CPT-11 (irinotecan) addition to bimonthly, high-dose leucovorin and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for pretreated metastatic colorectal cancer. GERCOR Eur J Cancer. 1999;35:1343.

    Article  CAS  PubMed  Google Scholar 

  26. Van Cutsem E, Lenz HJ, Kohne CH, et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol. 2015;33(7):692–700.

    Article  PubMed  Google Scholar 

  27. Fujita K, Kubota Y, Ishida H, Sasaki Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol. 2015;21(43):12234–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kawato Y, Aonuma M, Hirota Y, et al. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 1991;51:4187–91.

    CAS  PubMed  Google Scholar 

  29. Xu Y, Villalona-Calero MA. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol. 2002;13:1841–51.

    Article  CAS  PubMed  Google Scholar 

  30. van Ark-Otte J, Kedde MA, van der Vijgh WJ, et al. Determinants of CPT-11 and SN-38 activities in human lung cancer cells. Br J Cancer. 1998;77:2171–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chu XY, Suzuki H, Ueda K, et al. Active efflux of CPT-11 and its metabolites in human KB-derived cell lines. J Pharmacol Exp Ther. 1999;288:735–41.

    CAS  PubMed  Google Scholar 

  32. Temmink OH, Emura T, de Bruin M, Fukushima M, Peters GJ. Therapeutic potential of the dual-targeted TAS-102 formulation in the treatment of gastrointestinal malignancies. Cancer Sci. 2007;98:779–89.

    Article  CAS  PubMed  Google Scholar 

  33. Dexter DL, Wolberg WH, Ansfield FJ, Helson L, Heidelberger C. The clinical pharmacology of 5-trifluoromethyl-2′-deoxyuridine. Cancer Res. 1972;32:247–53.

    CAS  PubMed  Google Scholar 

  34. Fukushima M, Suzuki N, Emura T, Yano S, Kazuno H, Tada Y, et al. Structure and activity of specific inhibitors of thymidine phosphorylase to potentiate the function of antitumor 2′-deoxyribonucleosides. Biochem Parmacol. 2000;59:1227–36.

    Article  CAS  Google Scholar 

  35. Murakami Y, Kazano H, Emura T, Tsujimoto H, Suzuki N, Fukushima M. Different mechanisms of acquired resistance to fluorinated pyrimidines in human colorectal cancer cells. Int J Oncol. 2000;17:277–83.

    CAS  PubMed  Google Scholar 

  36. Mayer RJ, Van Cutsem E, Falcone A, et al. Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med. 2015;372(20):1909–19.

    Article  PubMed  Google Scholar 

  37. Olaf H, et al. Trifluorothymidine resistance is associated with decreased thymidine kinase and equilibrative nucleoside transporter expression or increased secretory phospholipase A2. Mol Cancer Ther. 2010;9(4):1047–57.

    Article  Google Scholar 

  38. Fakih M. The evolving role of VEGF-targeted therapies in the treatment of metastatic colorectal cancer. Expert Rev Anticancer Ther. 2013;4:427–38.

    Article  Google Scholar 

  39. Gambardella V, Tarazona N, Cejalvo JM, Roselló S, Certantes A. Clinical pharmacokinetics and pharmacodynamics of ramicirumab in the treatment of colorectal cancer. Expert Opin Drug Metab Toxicol. 2016;12(4):449–56.

    Article  CAS  PubMed  Google Scholar 

  40. Qu CY, Zheng Y, Zhang Y, Shen F, Cao J, Xu LM. Value of bevacizumab in treatment of colorectal cancer: a meta-analysis. World J Gastroenterol. 2015;21(16):50-72–5080.

    Article  CAS  Google Scholar 

  41. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8:592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8:299–309.

    Article  CAS  PubMed  Google Scholar 

  43. Blouw B, et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell. 2003;4:133–46.

    Article  CAS  PubMed  Google Scholar 

  44. Kurai J, Chikumi H, Hashimoto K, et al. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin Cancer Res. 2007;13(5):1552–61.

    Article  CAS  PubMed  Google Scholar 

  45. • Deming D, Holen K. KRAS mutation analysis prior to EGFR-directed therapy for metastatic colorectal cancer: a review and cost analysis. Curr Cancer Ther Rev. 2010;6(4):256–61. This manuscript reviews the ability of KRAS testing to predict resistance to anti-EGFR directed therapies and the immense cost savings as the result of this becoming a standard practice.

    Article  CAS  Google Scholar 

  46. Tran NH, Cavalcante LL, Lubner SJ, et al. Precision medicine in colorectal cancer: the molecular profile alters treatment strategies. Ther Adv Med Oncol. 2015;7(5):252–62.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Al-Shamsi HO, Alhazzani W, Wolff RA. Extended RAS testing in metastatic colorectal cancer-refining the predictive molecular biomarkers. J Gastrointest Oncol. 2015;6(3):314–21.

    PubMed  PubMed Central  Google Scholar 

  48. Turk A, Deming DA. BRAF mutation in colorectal cancer. Personalized Medicine in Oncology. 2016;5(1).

  49. • Venook AP, Niedzwiecki D, Innocenti F, et al. Impact of primary (1°) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol. 2016;34:(suppl; abstr 3504). This study demonstrates the importance of sidedness in the use of anti-EGFR directed therapies for the treatment of metastatic CRC.

  50. Benson AB 3rd, Venook AP, Cederquist L, et al. Colon cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15(3):370–98.

    Article  Google Scholar 

  51. Lee MS, Advani SM, Morris J, et al. Association of primary site and molecular featurs with progression-free survival and overall survival of metastatic colorectal cancer after anti-epidermal growth factor therapy. J Clin Oncol. 34:(suppl;abstr 3506).

  52. Seow HF, Yip WK, Fifis T. Advances in targeted and immunobased therapies for colorectal cancer in the genomic era. Oncol Targets Ther. 2016;9:1899–920.

    Article  Google Scholar 

  53. •• Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. This was the first description of the use of anti-PD1 therapies for the treatment of patients with mismatch repair deficient cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Overman MJ, Lonardi S, Leone F, et al. Nivolumab in patients with DNA mismatch repair deficient/microsatellite instability high metastatic colorectal cancer: update from CheckMate 142. J Clin Oncol. 2017;35:(suppl 4S;abstract 519).

  55. Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer. 2016;16:121–6.

    Article  CAS  PubMed  Google Scholar 

  56. Restifo NP, Marnicola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenber SA. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst. 1996;88(2):100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Garrido F, Aptsiauri N, Doordujin EM, Lora AMG, van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016;39:44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang X, Kelaria S, Kerstetter J, Wang J. The functional and prognostic implications of regulatory T cells in colorectal carcinoma. J Gastrointest Oncol. 2015;6(3):307–13.

    PubMed  PubMed Central  Google Scholar 

  59. Hope C, Foulcer S, Jagodinsky J, et al. Immunoregulatory roles of versican in the myeloma microenvironment. Blood. 2016;128(5):680–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the UW Cellular and Molecular Pathology Graduate program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin A. Deming.

Ethics declarations

Conflict of Interest

Philip Emmerich declares that he has no conflict of interest.

Linda Clipson declares that she has no conflict of interest.

Dustin A. Deming has received research funding through grants from Merck and Millennium.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Financial Support

This project was supported by P30 CA014520 (Core Grant, University of Wisconsin Carbone Cancer Center).

Additional information

This article is part of the Topical Collection on Basic Science Foundations in Colorectal Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emmerich, P., Clipson, L. & Deming, D.A. Resistance Mechanisms to Colorectal Cancer Therapeutics and the Clinical Implications. Curr Colorectal Cancer Rep 13, 334–340 (2017). https://doi.org/10.1007/s11888-017-0374-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-017-0374-5

Keywords

Navigation