Advertisement

Current Colorectal Cancer Reports

, Volume 13, Issue 2, pp 101–110 | Cite as

WNT Signaling and Colorectal Cancer

  • Emma M. Schatoff
  • Benjamin I. Leach
  • Lukas E. Dow
Basic Science Foundations in Colorectal Cancer (J Roper, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Basic Science Foundations in Colorectal Cancer

Abstract

The WNT signaling pathway is a critical mediator of tissue homeostasis and repair, and frequently co-opted during tumor development. Almost all colorectal cancers (CRC) demonstrate hyperactivation of the WNT pathway, which in many cases is believed to be the initiating and driving event. In this short review, we provide a focused overview of recent developments in our understanding of the WNT pathway in CRC, describe new research tools that are enabling a deeper understanding of WNT biology, and outline ongoing efforts to target this pathway therapeutically.

Keywords

Colorectal cancer CRC Wnt APC Beta-catenin RSPO 

Notes

Acknowledgements

EMS is supported by a Medical Scientist Training Program grant from the National Institute of General Medical Sciences of the National Institutes of Health under award number T32GM07739 to the Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program. LED is supported by a K22 Career Development Award from the NCI/NIH (CA 181280-01), with funding from the Starr Cancer Consortium (I8-A8-030) and NIH/NCI (5R01CA195787-02).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383(9927):1490–502.CrossRefPubMedGoogle Scholar
  3. 3.
    • van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933–45. This paper demonstrated the potential to establish living repositories of patient-derived organoid cultures and use them to prospectively identify drug sensitivities and new driver mutations in CRC.Google Scholar
  4. 4.
    Jiang X, Hao HX, Growney JD, et al. Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A. 2013;110(31):12649–54.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Liu J, Pan S, Hsieh MH, et al. Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proc Natl Acad Sci U S A. 2013;110(50):20224–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Madan B, Ke Z, Harmston N, et al. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene. 2016;35(17):2197–207.CrossRefPubMedGoogle Scholar
  7. 7.
    Koo BK, van Es JH, van den Born M, et al. Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43; Znrf3-mutant neoplasia. Proc Natl Acad Sci U S A. 2015;112(24):7548–50.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gurney A, Axelrod F, Bond CJ, et al. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A. 2012;109(29):11717–22.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    DeAlmeida VI, Miao L, Ernst JA, et al. The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res. 2007;67(11):5371–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Jackson H, Granger D, Jones G, et al. Novel bispecific domain antibody to LRP6 inhibits Wnt and R-spondin ligand-induced Wnt signaling and tumor growth. Mol Cancer Res. 2016;14(9):859–68.CrossRefPubMedGoogle Scholar
  11. 11.
    Huang S-MA, Mishina YM, Liu S, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461(7264):614–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Waaler J, Machon O, von Kries JP, et al. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth. Cancer Res. 2011;71(1):197–205.CrossRefPubMedGoogle Scholar
  13. 13.
    Arques O, Chicote I, Puig I, et al. Tankyrase inhibition blocks Wnt/beta-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer. Clin Cancer Res. 2016;22(3):644–56.CrossRefPubMedGoogle Scholar
  14. 14.
    Lau T, Chan E, Callow M, et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 2013;73(10):3132–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhong Y, Katavolos P, Nguyen T, et al. Tankyrase inhibition causes reversible intestinal toxicity in mice with a therapeutic index < 1. Toxicol Pathol. 2016;44(2):267–78.CrossRefPubMedGoogle Scholar
  16. 16.
    Emami KH, Nguyen C, Ma H, et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci U S A. 2004;101(34):12682–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen Z, Venkatesan AM, Dehnhardt CM, et al. 2,4-Diamino-quinazolines as inhibitors of beta-catenin/Tcf-4 pathway: potential treatment for colorectal cancer. Bioorg Med Chem Lett. 2009;19(17):4980–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Trosset JY, Dalvit C, Knapp S, et al. Inhibition of protein-protein interactions: the discovery of druglike beta-catenin inhibitors by combining virtual and biophysical screening. Proteins. 2006;64(1):60–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Gonsalves FC, Klein K, Carson BB, et al. An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proc Natl Acad Sci U S A. 2011;108(15):5954–63.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dandekar S, Romanos-Sirakis E, Pais F, et al. Wnt inhibition leads to improved chemosensitivity in paediatric acute lymphoblastic leukaemia. Br J Haematol. 2014;167(1):87–99.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mathur R, Sehgal L, Braun FK, et al. Targeting Wnt pathway in mantle cell lymphoma-initiating cells. J Hematol Oncol. 2015;8:63.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jarde T, Evans RJ, McQuillan KL, et al. In vivo and in vitro models for the therapeutic targeting of Wnt signaling using a Tet-ODeltaN89beta-catenin system. Oncogene. 2013;32(7):883–93.CrossRefPubMedGoogle Scholar
  23. 23.
    Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192–205.CrossRefPubMedGoogle Scholar
  24. 24.
    McCartney BM, Näthke IS. Cell regulation by the Apc protein Apc as master regulator of epithelia. Curr Opin Cell Biol. 2008;20(2):186–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5(1):a007898.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Barker N, Ridgway R, van Es J, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2008.Google Scholar
  28. 28.
    Sansom OJ, Reed KR, Hayes AJ, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 2004;18(12):1385–90.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    • Dow LE, O’Rourke KP, Simon J, et al. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell. 2015;161(7):1539–52. This paper defined the importance of sustained Apc loss for driving tumorigenesis in the colon. Specifically, that restoring normal levels of Apc is sufficient to revert even advanced carcinomas to normal epithelium.Google Scholar
  30. 30.
    Lyashenko N, Winter M, Migliorini D, et al. Differential requirement for the dual functions of beta-catenin in embryonic stem cell self-renewal and germ layer formation. Nat Cell Biol. 2011;13(7):753–61.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Marucci L, Pedone E, Di Vicino U, et al. beta-catenin fluctuates in mouse ESCs and is essential for Nanog-mediated reprogramming of somatic cells to pluripotency. Cell Rep. 2014;8(6):1686–96.CrossRefPubMedGoogle Scholar
  32. 32.
    Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol. 2014;15(1):19–33.CrossRefPubMedGoogle Scholar
  33. 33.
    Schepers A, Clevers H. Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb Perspect Biol. 2012;4(4):a007989.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kuhnert F, Davis CR, Wang HT, et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci U S A. 2004;101(1):266–71.CrossRefPubMedGoogle Scholar
  35. 35.
    Flanagan DJ, Phesse TJ, Barker N, et al. Frizzled7 functions as a Wnt receptor in intestinal epithelial Lgr5(+) stem cells. Stem Cell Rep. 2015;4(5):759–67.CrossRefGoogle Scholar
  36. 36.
    Korinek V, Barker N, Moerer P, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet. 1998;19(4):379–83.CrossRefPubMedGoogle Scholar
  37. 37.
    van Es JH, Haegebarth A, Kujala P, et al. A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal. Mol Cell Biol. 2012;32(10):1918–27.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fevr T, Robine S, Louvard D, et al. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol. 2007;27(21):7551–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Farin HF, Van Es JH, Clevers H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology. 2012;143(6):1518–29. e7.CrossRefPubMedGoogle Scholar
  40. 40.
    Das S, Yu S, Sakamori R, et al. Wntless in Wnt secretion: molecular, cellular and genetic aspects. Front Biol (Beijing). 2012;7(6):587–93.CrossRefGoogle Scholar
  41. 41.
    Banziger C, Soldini D, Schutt C, et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 2006;125(3):509–22.CrossRefPubMedGoogle Scholar
  42. 42.
    Belenkaya TY, Wu Y, Tang X, et al. The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell. 2008;14(1):120–31.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang P, Wu Y, Belenkaya TY, et al. SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res. 2011;21(12):1677–90.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Harterink M, Port F, Lorenowicz MJ, et al. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol. 2011;13(8):914–23.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Koo BK, Spit M, Jordens I, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature. 2012;488(7413):665–9.CrossRefPubMedGoogle Scholar
  47. 47.
    de Lau W, Peng WC, Gros P, et al. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev. 2014;28(4):305–16.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cancer Genome Atlas, N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.CrossRefGoogle Scholar
  49. 49.
    Seshagiri S, Stawiski EW, Durinck S, et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488(7413):660–4.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Shinmura K, Kahyo T, Kato H, et al. RSPO fusion transcripts in colorectal cancer in Japanese population. Mol Biol Rep. 2014;41(8):5375–84.CrossRefPubMedGoogle Scholar
  51. 51.
    • Storm EE, Durinck S, de Sousa e Melo F, et al. Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function. Nature. 2016;529(7584):97–100. This paper demonstrated that antibodies targeting RSPO3 were sufficient to halt tumor growth in xenografts of CRCs carrying PTPRK-RSPO3 fusions. This example implies RSPO fusions are a driving event in CRC and highlights a potential therapeutic approach.Google Scholar
  52. 52.
    Unni AM, Lockwood WW, Zejnullahu K, et al. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. eLife. 2015;4:e06907.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bhanja P, Saha S, Kabarriti R, et al. Protective role of R-spondin1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice. PLoS One. 2009;4(11):e8014.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hilkens J, Timmer NC, Boer M, et al. RSPO3 expands intestinal stem cell and niche compartments and drives tumorigenesis. Gut. 2016.Google Scholar
  55. 55.
    Giannakis M, Hodis E, Jasmine Mu X, et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat Genet. 2014;46(12):1264–6.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Albuquerque C, Breukel C, van der Luijt R, et al. The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet. 2002;11(13):1549–60.CrossRefPubMedGoogle Scholar
  57. 57.
    Gaspar C, Franken P, Molenaar L, et al. A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis. PLoS Genet. 2009;5(7):e1000547.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5.CrossRefPubMedGoogle Scholar
  59. 59.
    •• Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521(7550):43–7. This study, along with Matano et al. (Ref 36) demonstrated the ability to sequencially and specifically manipulate genomic loci in cultured human organoids. This enabled the authors of both studies to recapitulate the proposed sequence of oncogenesis in the colon (The Vogelgram) and highlight the stepwise transition to CRC.Google Scholar
  60. 60.
    Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256–62.PubMedGoogle Scholar
  61. 61.
    Yilmaz OH, Katajisto P, Lamming DW, et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature. 2012;486(7404):490–5.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Grun D, Lyubimova A, Kester L, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525(7568):251–5.CrossRefPubMedGoogle Scholar
  63. 63.
    Farin HF, Jordens I, Mosa MH, et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530(7590):340–3.CrossRefPubMedGoogle Scholar
  64. 64.
    Yui S, Nakamura T, Sato T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med. 2012;18(4):618–23.CrossRefPubMedGoogle Scholar
  65. 65.
    Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 1990;247(4940):322–4.CrossRefPubMedGoogle Scholar
  66. 66.
    Shibata H, Toyama K, Shioya H, et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science. 1997;278(5335):120–3.CrossRefPubMedGoogle Scholar
  67. 67.
    Hung KE, Maricevich MA, Richard LG, et al. Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc Natl Acad Sci U S A. 2010;107(4):1565–70.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hadac JN, Leystra AA, Paul Olson TJ, et al. Colon tumors with the simultaneous induction of driver mutations in APC, KRAS, and PIK3CA still progress through the adenoma-to-carcinoma sequence. Cancer Prev Res (Phila). 2015;8(10):952–61.CrossRefGoogle Scholar
  69. 69.
    Saam JR, Gordon JI. Inducible gene knockouts in the small intestinal and colonic epithelium. J Biol Chem. 1999;274(53):38071–82.CrossRefPubMedGoogle Scholar
  70. 70.
    Hinoi T, Akyol A, Theisen BK, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 2007;67(20):9721–30.CrossRefPubMedGoogle Scholar
  71. 71.
    Feng Y, Sentani K, Wiese A, et al. Sox9 induction, ectopic Paneth cells, and mitotic spindle axis defects in mouse colon adenomatous epithelium arising from conditional biallelic Apc inactivation. Am J Pathol. 2013;183(2):493–503.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Xue Y, Johnson R, Desmet M, et al. Generation of a transgenic mouse for colorectal cancer research with intestinal cre expression limited to the large intestine. Mol Cancer Res. 2010;8(8):1095–104.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Tetteh PW, Kretzschmar K, Begthel H, et al. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research. Proc Natl Acad Sci U S A. 2016;113(42):11859–64.CrossRefPubMedGoogle Scholar
  74. 74.
    Dow LE, Fisher J, O’Rourke KP, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015;33(4):390–4.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Rowan AJ, Lamlum H, Ilyas M, et al. APC mutations in sporadic colorectal tumors: a mutational “hotspot” and interdependence of the “two hits”. Proc Natl Acad Sci U S A. 2000;97(7):3352–7.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Sieber OM, Segditsas S, Knudsen AL, et al. Disease severity and genetic pathways in attenuated familial adenomatous polyposis vary greatly but depend on the site of the germline mutation. Gut. 2006;55(10):1440–8.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Gaspar C, Fodde R. APC dosage effects in tumorigenesis and stem cell differentiation. Int J Dev Biol. 2004;48(5–6):377–86.CrossRefPubMedGoogle Scholar
  78. 78.
    Le PN, McDermott JD, Jimeno A. Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther. 2015;146:1–11.CrossRefPubMedGoogle Scholar
  79. 79.
    de Lau W, Barker N, Low TY, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature. 2011;476(7360):293–7.CrossRefPubMedGoogle Scholar
  80. 80.
    Wu X, Luo F, Li J, et al. Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int J Oncol. 2016;48(4):1333–40.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Schoumacher M, Hurov KE, Lehar J, et al. Inhibiting Tankyrases sensitizes KRAS-mutant cancer cells to MEK inhibitors via FGFR2 feedback signaling. Cancer Res. 2014;74(12):3294–305.CrossRefPubMedGoogle Scholar
  82. 82.
    Riffell JL, Lord CJ, Ashworth A. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov. 2012;11(12):923–36.CrossRefPubMedGoogle Scholar
  83. 83.
    Chen ZL, Shao WJ, Xu F, et al. Acute Wnt pathway activation positively regulates leptin gene expression in mature adipocytes. Cell Signal. 2015;27(3):587–97.CrossRefPubMedGoogle Scholar
  84. 84.
    Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212–7.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(7559):231–5.CrossRefPubMedGoogle Scholar
  88. 88.
    Oderup C, LaJevic M, Butcher EC. Canonical and noncanonical Wnt proteins program dendritic cell responses for tolerance. J Immunol. 2013;190(12):6126–34.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Suryawanshi A, Manoharan I, Hong Y, et al. Canonical wnt signaling in dendritic cells regulates Th1/Th17 responses and suppresses autoimmune neuroinflammation. J Immunol. 2015;194(7):3295–304.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Valencia J, Hernandez-Lopez C, Martinez VG, et al. Wnt5a skews dendritic cell differentiation to an unconventional phenotype with tolerogenic features. J Immunol. 2011;187(8):4129–39.CrossRefPubMedGoogle Scholar
  91. 91.
    Swafford D, Manicassamy S. Wnt signaling in dendritic cells: its role in regulation of immunity and tolerance. Discov Med. 2015;19(105):303–10.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Gattinoni L, Zhong XS, Palmer DC, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med. 2009;15(7):808–13.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Emma M. Schatoff
    • 1
    • 2
  • Benjamin I. Leach
    • 1
    • 3
  • Lukas E. Dow
    • 1
    • 4
    • 5
  1. 1.Sandra and Edward Meyer Cancer CenterNew YorkUSA
  2. 2.Weill Cornell/Rockefeller/Sloan-Kettering Tri-I MD-PhD ProgramNew YorkUSA
  3. 3.New York Presbyterian HospitalNew YorkUSA
  4. 4.Department of MedicineNew YorkUSA
  5. 5.Department of BiochemistryWeill Cornell MedicineNew YorkUSA

Personalised recommendations