Current Colorectal Cancer Reports

, Volume 13, Issue 1, pp 61–72 | Cite as

The Impact of Novel Radiation Treatment Techniques on Toxicity and Clinical Outcomes in Rectal Cancer

  • Lara Hathout
  • Terence Williams
  • Salma K. JabbourEmail author
Radiation Therapy and Radiation Therapy Innovations in Colorectal Cancer (JY Wo, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Radiation Therapy and Radiation Therapy Innovations in Colorectal Cancer


Purpose of Review

Three-dimensional conformal radiation therapy (3DCRT) has been the standard technique in the treatment of rectal cancer. The use of new radiation treatment technologies such as intensity-modulated radiation therapy (IMRT), proton therapy (PT), stereotactic body radiation therapy (SBRT), and brachytherapy (BT) has been increasing over the past 10 years. This review will highlight the advantages and drawbacks of these techniques.

Recent Findings

IMRT, PT, SBRT, and BT achieve a higher target coverage conformity and a higher organ at risk sparing and enable dose escalation compared to 3DCRT. Some studies suggest a reduction in gastrointestinal and hematologic toxicities and an increase in the complete pathologic response rate; however, the clinical benefit of these techniques remains controversial.


The results of these new techniques seem encouraging despite conclusive data. Further trials are required to establish their role in rectal cancer.


Novel technologies IMRT Proton therapy SBRT Rectal cancer 



This work was supported by the following grants: NIH R01 CA198128 (TW). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with Ethical Standards

Conflict of Interest

Lara Hathout and Salma K. Jabbour declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Surveillance E, End Results (SEER). 18 registries National Cancer Institute. 2015.Google Scholar
  3. 3.
    Bailey CE, Hu CY, You YN, Bednarski BK, Rodriguez-Bigas MA, Skibber JM, et al. Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975-2010. JAMA Surg. 2015;150(1):17–22.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Havenga K, Enker WE, Norstein J, Moriya Y, Heald RJ, van Houwelingen HC, et al. Improved survival and local control after total mesorectal excision or D3 lymphadenectomy in the treatment of primary rectal cancer: an international analysis of 1411 patients. Eur J Surg Oncol. 1999;25(4):368–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Sauer R, Becker H, Hohenberger W, Rodel C, Wittekind C, Fietkau R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351(17):1731–40.CrossRefPubMedGoogle Scholar
  6. 6.
    Battersby NJ, How P, Moran B, Stelzner S, West NP, Branagan G, et al. Prospective validation of a low rectal cancer magnetic resonance imaging staging system and development of a local recurrence risk stratification model: the MERCURY II study. Ann Surg. 2016;263(4):751–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Improved survival with preoperative radiotherapy in resectable rectal cancer. Swedish Rectal Cancer Trial. N Engl J Med. 1997;336(14):980-7.Google Scholar
  8. 8.
    Folkesson J, Birgisson H, Pahlman L, Cedermark B, Glimelius B, Gunnarsson U. Swedish Rectal Cancer Trial: long lasting benefits from radiotherapy on survival and local recurrence rate. J Clin Oncol. 2005;23(24):5644–50.CrossRefPubMedGoogle Scholar
  9. 9.
    McCarthy K, Pearson K, Fulton R, Hewitt J. Pre-operative chemoradiation for non-metastatic locally advanced rectal cancer. Cochrane Database Syst Rev. 2012;12:CD008368.PubMedGoogle Scholar
  10. 10.
    NIH consensus conference. Adjuvant therapy for patients with colon and rectal cancer. JAMA. 1990;264(11):1444–50.CrossRefGoogle Scholar
  11. 11.
    Krook JE, Moertel CG, Gunderson LL, Wieand HS, Collins RT, Beart RW, et al. Effective surgical adjuvant therapy for high-risk rectal carcinoma. N Engl J Med. 1991;324(11):709–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rose BS, Aydogan B, Liang Y, Yeginer M, Hasselle MD, Dandekar V, et al. Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2011;79(3):800–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Roh MS, Colangelo LH, O’Connell MJ, Yothers G, Deutsch M, Allegra CJ, et al. Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol. 2009;27(31):5124–30.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sun Z, Adam MA, Kim J, Czito B, Mantyh C, Migaly J. Intensity-modulated radiation therapy is not associated with perioperative or survival benefit over 3D-conformal radiotherapy for rectal cancer. J Gastrointest Surg. 2016;21:106–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Arbea L, Ramos LI, Martinez-Monge R, Moreno M, Aristu J. Intensity-modulated radiation therapy (IMRT) vs. 3D conformal radiotherapy (3DCRT) in locally advanced rectal cancer (LARC): dosimetric comparison and clinical implications. Radiat Oncol. 2010;5:17.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cilla S, Caravatta L, Picardi V, Sabatino D, Macchia G, Digesu C, et al. Volumetric modulated arc therapy with simultaneous integrated boost for locally advanced rectal cancer. Clin Oncol (R Coll Radiol). 2012;24(4):261–8.CrossRefGoogle Scholar
  18. 18.
    Duthoy W, De Gersem W, Vergote K, Boterberg T, Derie C, Smeets P, et al. Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int J Radiat Oncol Biol Phys. 2004;60(3):794–806.CrossRefPubMedGoogle Scholar
  19. 19.
    Guerrero Urbano MT, Henrys AJ, Adams EJ, Norman AR, Bedford JL, Harrington KJ, et al. Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels. Int J Radiat Oncol Biol Phys. 2006;65(3):907–16.CrossRefPubMedGoogle Scholar
  20. 20.
    Mok H, Crane CH, Palmer MB, Briere TM, Beddar S, Delclos ME, et al. Intensity modulated radiation therapy (IMRT): differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma. Radiat Oncol. 2011;6:63.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhao J, Hu W, Cai G, Wang J, Xie J, Peng J, et al. Dosimetric comparisons of VMAT, IMRT and 3DCRT for locally advanced rectal cancer with simultaneous integrated boost. Oncotarget. 2016;7(5):6345–51.PubMedGoogle Scholar
  22. 22.
    Baglan KL, Frazier RC, Yan D, Huang RR, Martinez AA, Robertson JM. The dose-volume relationship of acute small bowel toxicity from concurrent 5-FU-based chemotherapy and radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2002;52(1):176–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Robertson JM, Lockman D, Yan D, Wallace M. The dose-volume relationship of small bowel irradiation and acute grade 3 diarrhea during chemoradiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2008;70(2):413–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Robertson JM, Sohn M, Yan D. Predicting grade 3 acute diarrhea during radiation therapy for rectal cancer using a cutoff-dose logistic regression normal tissue complication probability model. Int J Radiat Oncol Biol Phys. 2010;77(1):66–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Tho LM, Glegg M, Paterson J, Yap C, MacLeod A, McCabe M, et al. Acute small bowel toxicity and preoperative chemoradiotherapy for rectal cancer: investigating dose-volume relationships and role for inverse planning. Int J Radiat Oncol Biol Phys. 2006;66(2):505–13.CrossRefPubMedGoogle Scholar
  26. 26.
    • Samuelian JM, Callister MD, Ashman JB, Young-Fadok TM, Borad MJ, Gunderson LL. Reduced acute bowel toxicity in patients treated with intensity-modulated radiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82(5):1981–7. Retrospective analysis of 92 patients of whom 66% were treated with 3DCRT and 34% with IMRT. IMRT was associated with a lower rate of GI toxicity.CrossRefPubMedGoogle Scholar
  27. 27.
    Parekh A, Truong MT, Pashtan I, Qureshi MM, Martin NE, Nawaz O, et al. Acute gastrointestinal toxicity and tumor response with preoperative intensity modulated radiation therapy for rectal cancer. Gastrointest Cancer Res. 2013;6(5-6):137–43.PubMedPubMedCentralGoogle Scholar
  28. 28.
    • Jabbour SK, Patel S, Herman JM, Wild A, Nagda SN, Altoos T, et al. Intensity-modulated radiation therapy for rectal carcinoma can reduce treatment breaks and emergency department visits. Int J Surg Oncol. 2012;2012:891067. A retrospective review of 86 patients treated with IMRT (n=30) and 3DCRT (n=56). They were fewer hospitalizations, treatment breaks and grade ≥ 3 toxicities in the IMRT arm.PubMedPubMedCentralGoogle Scholar
  29. 29.
    •• Hong TS, Moughan J, Garofalo MC, Bendell J, Berger AC, Oldenburg NB, et al. NRG Oncology Radiation Therapy Oncology Group 0822: a phase 2 study of preoperative chemoradiation therapy using intensity modulated radiation therapy in combination with capecitabine and oxaliplatin for patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2015;93(1):29–36. Largest prospective trial evaluating the rate of GI toxicity of neoadjuvant chemoradiation with capecitabine, oxaliplatin, and IMRT in patients with locally advanced rectal cancer. Acute grade 2 to 5 GI toxicity was the primary outcome. IMRT failed to reduce acute GI toxicity.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wong SJ, Winter K, Meropol NJ, Anne PR, Kachnic L, Rashid A, et al. Radiation Therapy Oncology Group 0247: a randomized phase II study of neoadjuvant capecitabine and irinotecan or capecitabine and oxaliplatin with concurrent radiotherapy for patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82(4):1367–75.CrossRefPubMedGoogle Scholar
  31. 31.
    Becouarn Y, Ychou M, Ducreux M, Borel C, Bertheault-Cvitkovic F, Seitz JF, et al. Phase II trial of oxaliplatin as first-line chemotherapy in metastatic colorectal cancer patients. Digestive Group of French Federation of Cancer Centers. J Clin Oncol. 1998;16(8):2739–44.CrossRefPubMedGoogle Scholar
  32. 32.
    Diaz-Rubio E, Sastre J, Zaniboni A, Labianca R, Cortes-Funes H, de Braud F, et al. Oxaliplatin as single agent in previously untreated colorectal carcinoma patients: a phase II multicentric study. Ann Oncol. 1998;9(1):105–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Aschele C, Cionini L, Lonardi S, Pinto C, Cordio S, Rosati G, et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J Clin Oncol. 2011;29(20):2773–80.CrossRefPubMedGoogle Scholar
  34. 34.
    Gerard JP, Azria D, Gourgou-Bourgade S, Martel-Laffay I, Hennequin C, Etienne PL, et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J Clin Oncol. 2010;28(10):1638–44.CrossRefPubMedGoogle Scholar
  35. 35.
    O’Connell MJ, Colangelo LH, Beart RW, Petrelli NJ, Allegra CJ, Sharif S, et al. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: surgical end points from National Surgical Adjuvant Breast and Bowel Project trial R-04. J Clin Oncol. 2014;32(18):1927–34.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rodel C, Graeven U, Fietkau R, Hohenberger W, Hothorn T, Arnold D, et al. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16(8):979–89.CrossRefPubMedGoogle Scholar
  37. 37.
    Ellis RE. The distribution of active bone marrow in the adult. Phys Med Biol. 1961;5:255–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Mauch P, Constine L, Greenberger J, Knospe W, Sullivan J, Liesveld JL, et al. Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys. 1995;31(5):1319–39.CrossRefPubMedGoogle Scholar
  39. 39.
    Mell LK, Schomas DA, Salama JK, Devisetty K, Aydogan B, Miller RC, et al. Association between bone marrow dosimetric parameters and acute hematologic toxicity in anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(5):1431–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Bazan JG, Hara W, Hsu A, Kunz PA, Ford J, Fisher GA, et al. Intensity-modulated radiation therapy versus conventional radiation therapy for squamous cell carcinoma of the anal canal. Cancer. 2011;117(15):3342–51.CrossRefPubMedGoogle Scholar
  41. 41.
    Salama JK, Mell LK, Schomas DA, Miller RC, Devisetty K, Jani AB, et al. Concurrent chemotherapy and intensity-modulated radiation therapy for anal canal cancer patients: a multicenter experience. J Clin Oncol. 2007;25(29):4581–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Bazan JG, Luxton G, Kozak MM, Anderson EM, Hancock SL, Kapp DS, et al. Impact of chemotherapy on normal tissue complication probability models of acute hematologic toxicity in patients receiving pelvic intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2013;87(5):983–91.CrossRefPubMedGoogle Scholar
  43. 43.
    • Newman NB, Sidhu MK, Baby R, Moss RA, Nissenblatt MJ, Chen T, et al. Long-term bone marrow suppression during postoperative chemotherapy in rectal cancer patients after preoperative chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2016;94(5):1052–60. Retrospective analysis of 35 patients treated with preoperative chemoradiation followed by adjuvant chemotherapy for locally advanced rectal cancer. The primary endpoint was to quantify bone marrow suppression during postoperative chemotherapy resulting from preoperative chemoradiation. Sparing of the bone marrow during preoperative radiation therapy can reduce hematologic toxicity and aid tolerance of adjuvant chemotherapy.CrossRefPubMedGoogle Scholar
  44. 44.
    Hong YS, Nam BH, Kim KP, Kim JE, Park SJ, Park YS, et al. Oxaliplatin, fluorouracil, and leucovorin versus fluorouracil and leucovorin as adjuvant chemotherapy for locally advanced rectal cancer after preoperative chemoradiotherapy (ADORE): an open-label, multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2014;15(11):1245–53.CrossRefPubMedGoogle Scholar
  45. 45.
    Yang TJ, Oh JH, Apte A, Son CH, Deasy JO, Goodman KA. Clinical and dosimetric predictors of acute hematologic toxicity in rectal cancer patients undergoing chemoradiotherapy. Radiother Oncol. 2014;113(1):29–34.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ballonoff A, Kavanagh B, McCarter M, Kane M, Pearlman N, Nash R, et al. Preoperative capecitabine and accelerated intensity-modulated radiotherapy in locally advanced rectal cancer: a phase II trial. Am J Clin Oncol. 2008;31(3):264–70.CrossRefPubMedGoogle Scholar
  47. 47.
    Freedman GM, Meropol NJ, Sigurdson ER, Hoffman J, Callahan E, Price R, et al. Phase I trial of preoperative hypofractionated intensity-modulated radiotherapy with incorporated boost and oral capecitabine in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2007;67(5):1389–93.CrossRefPubMedGoogle Scholar
  48. 48.
    • Li JL, Ji JF, Cai Y, Li XF, Li YH, Wu H, et al. Preoperative concomitant boost intensity-modulated radiotherapy with oral capecitabine in locally advanced mid-low rectal cancer: a phase II trial. Radiother Oncol. 2012;102(1):4–9. A phase II study of 63 patients treated with IMRT with simultaneous integrated boost with concurrent capecitabine evaluating the toxicity, postoperative complications, and pathological complete response (pCR). IMRT with concurrent boost can achieve a high pCR rate and a low toxicity profile.CrossRefPubMedGoogle Scholar
  49. 49.
    • Zhu J, Gu W, Lian P, Sheng W, Cai G, Shi D, et al. A phase II trial of neoadjuvant IMRT-based chemoradiotherapy followed by one cycle of capecitabine for stage II/III rectal adenocarcinoma. Radiat Oncol. 2013;8:130. A phase II trial of 42 patients treated with IMRT and concurrent oxaliplatin and capecitabine revealed good treatment outcomes with mild toxicities and acceptable surgical complications.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    •• Appelt AL, Ploen J, Harling H, Jensen FS, Jensen LH, Jorgensen JC, et al. High-dose chemoradiotherapy and watchful waiting for distal rectal cancer: a prospective observational study. Lancet Oncol. 2015;16(8):919–27. Prospective observational study examining the efficacy of high-dose chemoradiotherapy and brachytherapy boost in patients with distal rectal cancer followed by watchful waiting in clinical complete responders.CrossRefPubMedGoogle Scholar
  51. 51.
    Richetti A, Fogliata A, Clivio A, Nicolini G, Pesce G, Salati E, et al. Neo-adjuvant chemo-radiation of rectal cancer with volumetric modulated arc therapy: summary of technical and dosimetric features and early clinical experience. Radiat Oncol. 2010;5:14.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Colaco RJ, Nichols RC, Huh S, Getman N, Ho MW, Li Z, et al. Protons offer reduced bone marrow, small bowel, and urinary bladder exposure for patients receiving neoadjuvant radiotherapy for resectable rectal cancer. J Gastrointest Oncol. 2014;5(1):3–8.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Wolff HA, Wagner DM, Conradi LC, Hennies S, Ghadimi M, Hess CF, et al. Irradiation with protons for the individualized treatment of patients with locally advanced rectal cancer: a planning study with clinical implications. Radiother Oncol. 2012;102(1):30–7.CrossRefPubMedGoogle Scholar
  54. 54.
    • Blanco Kiely JP, White BM. Robust proton pencil beam scanning treatment planning for rectal cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2016;95(1):208–15. Proton Pencil Beam Scanning was compared to VMAT to evaluate the potential to offer advantages relative to interfraction uncertainties and dose volume histograms. It was found to be as robust as VMAT.CrossRefPubMedGoogle Scholar
  55. 55.
    Vuong T, Devic S. High-dose-rate pre-operative endorectal brachytherapy for patients with rectal cancer. J Contemp Brachytherapy. 2015;7(2):183–188.Google Scholar
  56. 56.
    Camilleri-Brennan J, Steele RJ. The impact of recurrent rectal cancer on quality of life. Eur J Surg Oncol. 2001;27(4):349–53.CrossRefPubMedGoogle Scholar
  57. 57.
    Nielsen MB, Laurberg S, Holm T. Current management of locally recurrent rectal cancer. Colorectal Dis. 2011;13(7):732–42.CrossRefPubMedGoogle Scholar
  58. 58.
    Asoglu O, Karanlik H, Muslumanoglu M, Igci A, Emek E, Ozmen V, et al. Prognostic and predictive factors after surgical treatment for locally recurrent rectal cancer: a single institute experience. Eur J Surg Oncol. 2007;33(10):1199–206.CrossRefPubMedGoogle Scholar
  59. 59.
    Heriot AG, Byrne CM, Lee P, Dobbs B, Tilney H, Solomon MJ, et al. Extended radical resection: the choice for locally recurrent rectal cancer. Dis Colon Rectum. 2008;51(3):284–91.CrossRefPubMedGoogle Scholar
  60. 60.
    Vermaas M, Ferenschild FT, Nuyttens JJ, Marinelli AW, Wiggers T, van der Sijp JR, et al. Preoperative radiotherapy improves outcome in recurrent rectal cancer. Dis Colon Rectum. 2005;48(5):918–28.CrossRefPubMedGoogle Scholar
  61. 61.
    Wells BJ, Stotland P, Ko MA, Al-Sukhni W, Wunder J, Ferguson P, et al. Results of an aggressive approach to resection of locally recurrent rectal cancer. Ann Surg Oncol. 2007;14(2):390–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Abusaris H, Hoogeman M, Nuyttens JJ. Re-irradiation: outcome, cumulative dose and toxicity in patients retreated with stereotactic radiotherapy in the abdominal or pelvic region. Technol Cancer Res Treat. 2012;11(6):591–7.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Dagoglu N, Mahadevan A, Nedea E, Poylin V, Nagle D. Stereotactic body radiotherapy (SBRT) reirradiation for pelvic recurrence from colorectal cancer. J Surg Oncol. 2015;111(4):478–82.CrossRefPubMedGoogle Scholar
  64. 64.
    Defoe SG, Bernard ME, Rwigema JC, Heron DE, Ozhasoglu C, Burton S. Stereotactic body radiotherapy for the treatment of presacral recurrences from rectal cancers. J Cancer Res Ther. 2011;7(4):408–11.CrossRefPubMedGoogle Scholar
  65. 65.
    Dewas S, Bibault JE, Mirabel X, Nickers P, Castelain B, Lacornerie T, et al. Robotic image-guided reirradiation of lateral pelvic recurrences: preliminary results. Radiat Oncol. 2011;6:77.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Dagoglu N, Nedea E, Poylin V, Nagle D, Mahadevan A. Post operative stereotactic radiosurgery for positive or close margins after preoperative chemoradiation and surgery for rectal cancer. J Gastrointest Oncol. 2016;7(3):315–20.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hull TL, Lavery IC, Saxton JP. Endocavitary irradiation. An option in select patients with rectal cancer. Dis Colon Rectum. 1994;37(12):1266–70.CrossRefPubMedGoogle Scholar
  68. 68.
    Kovalic JJ. Endocavitary irradiation for rectal cancer and villous adenomas. Int J Radiat Oncol Biol Phys. 1988;14(2):261–4.CrossRefPubMedGoogle Scholar
  69. 69.
    Papillon J. Intracavitary irradiation of early rectal cancer for cure. A series of 186 cases. Cancer. 1975;36(2):696–701.CrossRefPubMedGoogle Scholar
  70. 70.
    Christoforidis D, McNally MP, Jarosek SL, Madoff RD, Finne CO. Endocavitary contact radiation therapy for ultrasonographically staged T1 N0 and T2 N0 rectal cancer. Br J Surg. 2009;96(4):430–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Gerard JP, Romestaing P, Ardiet JM, Mornex F. Sphincter preservation in rectal cancer. Endocavitary radiation therapy. Semin Radiat Oncol. 1998;8(1):13–23.CrossRefPubMedGoogle Scholar
  72. 72.
    Geisler DP. Local treatment for rectal cancer. Clin Colon Rectal Surg. 2007;20(3):182–9.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kaufman N, Nori D, Shank B, Linares L, Harrison L, Fass D, et al. Remote afterloading intraluminal brachytherapy in the treatment of rectal, rectosigmoid, and anal cancer: a feasibility study. Int J Radiat Oncol Biol Phys. 1989;17(3):663–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Evans MD, Podgorsak EB. Rectal and oesophageal treatment by the Selectron High Dose Rate afterloader. Med Dosim. 1988;13(2):79–81.CrossRefPubMedGoogle Scholar
  75. 75.
    Vuong T, Belliveau PJ, Michel RP, Moftah BA, Parent J, Trudel JL, et al. Conformal preoperative endorectal brachytherapy treatment for locally advanced rectal cancer: early results of a phase I/II study. Dis Colon Rectum. 2002;45(11):1486–93. discussion 93-5.CrossRefPubMedGoogle Scholar
  76. 76.
    Plastaras JP, Berman AT, Freedman GM. Special cases for proton beam radiotherapy: re-irradiation, lymphoma, and breast cancer. J Seminoncol. 2014. doi: 10.1053/j.seminoncol.2014.10.001.
  77. 77.
    •• Appelt AL, Vogelius IR, Ploen J, Rafaelsen SR, Lindebjerg J, Havelund BM, et al. Long-term results of a randomized trial in locally advanced rectal cancer: no benefit from adding a brachytherapy boost. Int J Radiat Oncol Biol Phys. 2014;90(1):110–8. Largest study evaluating the benefit from a brachytherapy boost addition to long-course neoadjuvant chemoradiation. Despite an increased rate of pathologic tumor response after surgery, the addition of a brachytherapy boost did not impact late outcome.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Gerard JP, Chapet O, Nemoz C, Hartweig J, Romestaing P, Coquard R, et al. Improved sphincter preservation in low rectal cancer with high-dose preoperative radiotherapy: the lyon R96-02 randomized trial. J Clin Oncol. 2004;22(12):2404–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Jakobsen A, Mortensen JP, Bisgaard C, Lindebjerg J, Hansen JW, Rafaelsen SR. Preoperative chemoradiation of locally advanced T3 rectal cancer combined with an endorectal boost. Int J Radiat Oncol Biol Phys. 2006;64(2):461–5.CrossRefPubMedGoogle Scholar
  80. 80.
    Sun Myint A, Lee CD, Snee AJ, Perkins K, Jelley FE, Wong H. High dose rate brachytherapy as a boost after preoperative chemoradiotherapy for more advanced rectal tumours: the Clatterbridge experience. Clin Oncol (R Coll Radiol). 2007;19(9):711–9.CrossRefGoogle Scholar
  81. 81.
    Hoskin PJ, de Canha SM, Bownes P, Bryant L, Glynne JR. High dose rate afterloading intraluminal brachytherapy for advanced inoperable rectal carcinoma. Radiother Oncol. 2004;73(2):195–8.CrossRefPubMedGoogle Scholar
  82. 82.
    Harrison LB, Minsky BD, Enker WE, Mychalczak B, Guillem J, Paty PB, et al. High dose rate intraoperative radiation therapy (HDR-IORT) as part of the management strategy for locally advanced primary and recurrent rectal cancer. Int J Radiat Oncol Biol Phys. 1998;42(2):325–30.CrossRefPubMedGoogle Scholar
  83. 83.
    Diaz-Gonzalez JA, Calvo FA, Cortes J, Garcia-Sabrido JL, Gomez-Espi M, Del Valle E, et al. Prognostic factors for disease-free survival in patients with T3-4 or N+ rectal cancer treated with preoperative chemoradiation therapy, surgery, and intraoperative irradiation. Int J Radiat Oncol Biol Phys. 2006;64(4):1122–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Kienle P, Abend F, Dueck M, Abel U, Treiber M, Riedl S. Influence of intraoperative and postoperative radiotherapy on functional outcome in patients undergoing standard and deep anterior resection for rectal cancer. Dis Colon Rectum. 2006;49(5):557–67.CrossRefPubMedGoogle Scholar
  85. 85.
    Krempien R, Roeder F, Oertel S, Roebel M, Weitz J, Hensley FW, et al. Long-term results of intraoperative presacral electron boost radiotherapy (IOERT) in combination with total mesorectal excision (TME) and chemoradiation in patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2006;66(4):1143–51.CrossRefPubMedGoogle Scholar
  86. 86.
    Turley RS, Czito BG, Haney JC, Tyler DS, Mantyh CR, Migaly J. Intraoperative pelvic brachytherapy for treatment of locally advanced or recurrent colorectal cancer. Tech Coloproctol. 2013;17(1):95–100.CrossRefPubMedGoogle Scholar
  87. 87.
    Klink CD, Binnebosel M, Holy R, Neumann UP, Junge K. Influence of intraoperative radiotherapy (IORT) on perioperative outcome after surgical resection of rectal cancer. World J Surg. 2014;38(4):992–6.CrossRefPubMedGoogle Scholar
  88. 88.
    •• Goodman KA, Patton CE, Fisher GA, Hoffe SE, Haddock MG, Parikh PJ, et al. Appropriate customization of radiation therapy for stage II and III rectal cancer: executive summary of an ASTRO clinical practice statement using the RAND/UCLA appropriateness method. Pract Radiat Oncol. 2016;6(3):166–75. An ASTRO practice clinical statement has been recently published addressing the appropriate customization of radiation therapy in different clinical scenarios.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Lara Hathout
    • 1
  • Terence Williams
    • 2
  • Salma K. Jabbour
    • 1
    Email author
  1. 1.Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical SchoolRutgers, The State University of New JerseyNew BrunswickUSA
  2. 2.The Ohio State University, James Cance HospitalOHUSA

Personalised recommendations