Skip to main content

Advertisement

Log in

Identifying Appropriate Colorectal Cancer-Associated Antigens for the Clinical Trials

  • Immunotherapy of Malignancy (R Kim, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Clinical trials using immunotherapy as a targeted approach to the treatment of metastatic colorectal cancer (CRC) have limited clinical efficacy. Lack of proper identification of colorectal cancer-associated antigens and complexity of immunological functions could have hampered the proper therapeutic development. The review focuses on the tumor-associated antigens (TAA) that have been tested in clinical trial setting for treatment of advanced CRC. Since many of the tumor-associated antigens including carcinoembryonic antigen (CEA), beta human chorionic gonadotrophin (β-hCG), MUC1, guanylyl cyclase C (GUCY2C), epithelial growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), p53, and ras are highly expressed on colorectal cancer cells, these antigens have been used as targets for vaccination strategies. We will discuss the basic structural importance of different TAA and illustrate clinical studies showing benefits and limitations of each of the targets. Careful review and selection of the most appropriate CRC-associated antigens and better understanding of molecular biology-related immune modulation can lead to improved clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64:104–17.

    Article  PubMed  Google Scholar 

  2. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  CAS  PubMed  Google Scholar 

  3. Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kopetz S, Chang GJ, Overman MJ, et al. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol. 2009;27:3677–83.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:303–12.

    Article  CAS  PubMed  Google Scholar 

  6. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337–45.

    Article  CAS  PubMed  Google Scholar 

  7. Giusti RM, Cohen MH, Keegan P, Pazdur R. FDA review of a panitumumab (Vectibix) clinical trial for first-line treatment of metastatic colorectal cancer. Oncologist. 2009;14:284–90.

    Article  CAS  PubMed  Google Scholar 

  8. Venook A, Niedzwieki D, Lenz H. et. al. CALGB/SWOG 80405: phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). J Clin Oncol 32:5 s, 2014 (suppl; abstr LBA3)

  9. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    Article  CAS  PubMed  Google Scholar 

  10. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001;182:18–32.

    Article  CAS  PubMed  Google Scholar 

  12. Morse MA, Clay TM, Mosca P, Lyerly HK. Immunoregulatory T cells in cancer immunotherapy. Expert Opin Biol Ther. 2002;2:827–34.

    Article  CAS  PubMed  Google Scholar 

  13. Lizee G, Radvanyi LG, Overwijk WW, Hwu P. Improving antitumor immune responses by circumventing immunoregulatory cells and mechanisms. Clin Cancer Res. 2006;12:4794–803.

    Article  CAS  PubMed  Google Scholar 

  14. Merika E, Saif MW, Katz A, et al. Review. Colon cancer vaccines: an update. In Vivo. 2010;24:607–28. Nice review of most common vaccines strategies used in colon cancer and tumor associated antigens.

    CAS  PubMed  Google Scholar 

  15. Thomas P, Forse RA, Bajenova O. Carcinoembryonic antigen (CEA) and its receptor hnRNP M are mediators of metastasis and the inflammatory response in the liver. Clin Exp Metastasis. 2011;28:923–32.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas P, Gangopadhyay A, Steele Jr G, et al. The effect of transfection of the CEA gene on the metastatic behavior of the human colorectal cancer cell line MIP-101. Cancer Lett. 1995;92:59–66.

    Article  CAS  PubMed  Google Scholar 

  17. Hammarstrom S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol. 1999;9:67–81.

    Article  CAS  PubMed  Google Scholar 

  18. Prall F, Nollau P, Neumaier M, et al. CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues. J Histochem Cytochem. 1996;44:35–41.

    Article  CAS  PubMed  Google Scholar 

  19. Kodera Y, Isobe K, Yamauchi M, et al. Expression of carcinoembryonic antigen (CEA) and nonspecific crossreacting antigen (NCA) in gastrointestinal cancer; the correlation with degree of differentiation. Br J Cancer. 1993;68:130–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Metze D, Bhardwaj R, Amann U, et al. Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin. J Invest Dermatol. 1996;106:64–9.

    Article  CAS  PubMed  Google Scholar 

  21. Morse MA, Clay TM, Lyerly HK. CEA loaded dendritic cell vaccines. Cancer Chemother Biol Response Modif. 2002;20:385–90.

    CAS  PubMed  Google Scholar 

  22. Morse MA, Nair SK, Boczkowski D, et al. The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Int J Gastrointest Cancer. 2002;32:1–6.

    Article  CAS  PubMed  Google Scholar 

  23. Itoh T, Ueda Y, Kawashima I, et al. Immunotherapy of solid cancer using dendritic cells pulsed with the HLA-A24-restricted peptide of carcinoembryonic antigen. Cancer Immunol Immunother. 2002;51:99–106.

    Article  CAS  PubMed  Google Scholar 

  24. Fong L, Hou Y, Rivas A, et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A. 2001;98:8809–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Foon KA, John WJ, Chakraborty M, et al. Clinical and immune responses in advanced colorectal cancer patients treated with anti-idiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. Clin Cancer Res. 1997;3:1267–76.

    CAS  PubMed  Google Scholar 

  26. Conry RM, Allen KO, Lee S, et al. Human autoantibodies to carcinoembryonic antigen (CEA) induced by a vaccinia-CEA vaccine. Clin Cancer Res. 2000;6:34–41.

    CAS  PubMed  Google Scholar 

  27. Marshall JL, Hawkins MJ, Tsang KY, et al. Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J Clin Oncol. 1999;17:332–7.

    CAS  PubMed  Google Scholar 

  28. Tsang KY, Zaremba S, Nieroda CA, et al. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst. 1995;87:982–90.

    Article  CAS  PubMed  Google Scholar 

  29. Marshall JL, Hoyer RJ, Toomey MA, et al. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol. 2000;18:3964–73.

    CAS  PubMed  Google Scholar 

  30. Marshall JL, Gulley JL, Arlen PM, et al. Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol. 2005;23:720–31.

    Article  CAS  PubMed  Google Scholar 

  31. Morse MA, Chaudhry A, Gabitzsch ES, et al. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients. Cancer Immunol Immunother. 2013;62:1293–301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lesterhuis WJ, De Vries IJ, Schreibelt G, et al. Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res. 2010;30:5091–7.

    PubMed  Google Scholar 

  33. Lesterhuis WJ, de Vries IJ, Schuurhuis DH, et al. Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T cell responses in DTH skin tests. Ann Oncol. 2006;17:974–80.

    Article  CAS  PubMed  Google Scholar 

  34. Posner MC, Niedzwiecki D, Venook AP, et al. A phase II prospective multi-institutional trial of adjuvant active specific immunotherapy following curative resection of colorectal cancer hepatic metastases: cancer and leukemia group B study 89903. Ann Surg Oncol. 2008;15:158–64.

    Article  PubMed  Google Scholar 

  35. Morse MA, Niedzwiecki D, Marshall JL, et al. A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann Surg. 2013;258:879–86.

    Article  PubMed  Google Scholar 

  36. Rao B, Han M, Wang L, et al. Clinical outcomes of active specific immunotherapy in advanced colorectal cancer and suspected minimal residual colorectal cancer: a meta-analysis and system review. J Transl Med. 2011;9:17. Up-to-date meta-analysis of colorectal immunotherapy involving specific tumor antigens.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Parkhurst MR, Yang JC, Langan RC, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19:620–6. Interesting article of 3 patients with refractory colon cancer and use of CEA targeted immunotherapy.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Yamaguchi A, Ishida T, Nishimura G, et al. Human chorionic gonadotropin in colorectal cancer and its relationship to prognosis. Br J Cancer. 1989;60:382–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Webb A, Scott-Mackie P, Cunningham D, et al. The prognostic value of CEA, beta HCG, AFP, CA125, CA19-9 and C-erb B-2, beta HCG immunohistochemistry in advanced colorectal cancer. Ann Oncol. 1995;6:581–7.

    CAS  PubMed  Google Scholar 

  40. Dangles V, Halberstam I, Scardino A, et al. Tumor-associated antigen human chorionic gonadotropin beta contains numerous antigenic determinants recognized by in vitro-induced CD8+ and CD4+ T lymphocytes. Cancer Immunol Immunother. 2002;50:673–81.

    Article  CAS  PubMed  Google Scholar 

  41. Moulton HM, Yoshihara PH, Mason DH, et al. Active specific immunotherapy with a beta-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: antibody response is associated with improved survival. Clin Cancer Res. 2002;8:2044–51.

    CAS  PubMed  Google Scholar 

  42. Mukherjee P, Pathangey LB, Bradley JB, et al. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine. 2007;25:1607–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Karanikas V, Hwang LA, Pearson J, et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J Clin Invest. 1997;100:2783–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Loveland BE, Zhao A, White S, et al. Mannan-MUC1-pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma. Clin Cancer Res. 2006;12:869–77.

    Article  CAS  PubMed  Google Scholar 

  45. Kim GW, Lin JE, Waldman SA. GUCY2C: at the intersection of obesity and cancer. Trends Endocrinol Metab. 2013;24:165–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Waldman SA, Hyslop T, Schulz S, et al. Association of GUCY2C expression in lymph nodes with time to recurrence and disease-free survival in pN0 colorectal cancer. JAMA. 2009;301:745–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.

    Article  CAS  PubMed  Google Scholar 

  48. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.

    Article  CAS  PubMed  Google Scholar 

  49. Moroni M, Veronese S, Benvenuti S, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. 2005;6:279–86.

    Article  CAS  PubMed  Google Scholar 

  50. Sartore-Bianchi A, Moroni M, Veronese S, et al. Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J Clin Oncol. 2007;25:3238–45.

    Article  CAS  PubMed  Google Scholar 

  51. Aranda E, Abad A, Carrato A, et al. Treatment recommendations for metastatic colorectal cancer. Clin Transl Oncol. 2011;13:162–78.

    Article  PubMed  Google Scholar 

  52. Garcia-Foncillas J, Diaz-Rubio E. Progress in metastatic colorectal cancer: growing role of cetuximab to optimize clinical outcome. Clin Transl Oncol. 2010;12:533–42.

    Article  CAS  PubMed  Google Scholar 

  53. Heinemann V, Stintzing S, Kirchner T, et al. Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat Rev. 2009;35:262–71.

    Article  CAS  PubMed  Google Scholar 

  54. Modest DP, Jung A, Moosmann N, et al. The influence of KRAS and BRAF mutations on the efficacy of cetuximab-based first-line therapy of metastatic colorectal cancer: an analysis of the AIO KRK-0104-trial. Int J Cancer. 2012;131:980–6.

    Article  CAS  PubMed  Google Scholar 

  55. Martin V, Landi L, Molinari F, et al. HER2 gene copy number status may influence clinical efficacy to anti-EGFR monoclonal antibodies in metastatic colorectal cancer patients. Br J Cancer. 2013;108:668–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Shetye J, Frodin JE, Christensson B, et al. Immunohistochemical monitoring of metastatic colorectal carcinoma in patients treated with monoclonal antibodies (MAb 17-1A). Cancer Immunol Immunother. 1988;27:154–62.

    Article  CAS  PubMed  Google Scholar 

  57. Balzar M, Winter MJ, de Boer CJ, Litvinov SV. The biology of the 17-1A antigen (Ep-CAM). J Mol Med (Berl). 1999;77:699–712.

    Article  CAS  Google Scholar 

  58. Ullenhag GJ, Frodin JE, Mosolits S, et al. Immunization of colorectal carcinoma patients with a recombinant canarypox virus expressing the tumor antigen Ep-CAM/KSA (ALVAC-KSA) and granulocyte macrophage colony-stimulating factor induced a tumor-specific cellular immune response. Clin Cancer Res. 2003;9:2447–56.

    CAS  PubMed  Google Scholar 

  59. Neidhart J, Allen KO, Barlow DL, et al. Immunization of colorectal cancer patients with recombinant baculovirus-derived KSA (Ep-CAM) formulated with monophosphoryl lipid A in liposomal emulsion, with and without granulocyte-macrophage colony-stimulating factor. Vaccine. 2004;22:773–80.

    Article  CAS  PubMed  Google Scholar 

  60. Hurpin C, Rotarioa C, Bisceglia H, et al. The mode of presentation and route of administration are critical for the induction of immune responses to p53 and antitumor immunity. Vaccine. 1998;16:208–15.

    Article  CAS  PubMed  Google Scholar 

  61. Roth J, Dittmer D, Rea D, et al. p53 as a target for cancer vaccines: recombinant canarypox virus vectors expressing p53 protect mice against lethal tumor cell challenge. Proc Natl Acad Sci U S A. 1996;93:4781–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Vierboom MP, Nijman HW, Offringa R, et al. Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. J Exp Med. 1997;186:695–704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Menon AG, Kuppen PJ, van der Burg SH, et al. Safety of intravenous administration of a canarypox virus encoding the human wild-type p53 gene in colorectal cancer patients. Cancer Gene Ther. 2003;10:509–17.

    Article  CAS  PubMed  Google Scholar 

  64. van der Burg SH, Menon AG, Redeker A, et al. Induction of p53-specific immune responses in colorectal cancer patients receiving a recombinant ALVAC-p53 candidate vaccine. Clin Cancer Res. 2002;8:1019–27.

    PubMed  Google Scholar 

  65. Speetjens FM, Kuppen PJ, Welters MJ, et al. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin Cancer Res. 2009;15:1086–95.

    Article  CAS  PubMed  Google Scholar 

  66. Zeestraten EC, Speetjens FM, Welters MJ, et al. Addition of interferon-alpha to the p53-SLP(R) vaccine results in increased production of interferon-gamma in vaccinated colorectal cancer patients: a phase I/II clinical trial. Int J Cancer. 2013;132:1581–91.

    Article  CAS  PubMed  Google Scholar 

  67. Bristol JA, Orsini C, Lindinger P, et al. Identification of a ras oncogene peptide that contains both CD4(+) and CD8(+) T cell epitopes in a nested configuration and elicits both T cell subset responses by peptide or DNA immunization. Cell Immunol. 2000;205:73–83.

    Article  CAS  PubMed  Google Scholar 

  68. Carbone DP, Ciernik IF, Kelley MJ, et al. Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. J Clin Oncol. 2005;23:5099–107.

    Article  PubMed  Google Scholar 

  69. Toubaji A, Achtar M, Provenzano M, et al. Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol Immunother. 2008;57:1413–20.

    Article  CAS  PubMed  Google Scholar 

  70. Xiang B, Snook AE, Magee MS, Waldman SA. Colorectal cancer immunotherapy. Discov Med. 2013;15:301–8. Great review of current immunotherapeutic strategies in colorectal cancer and scientific rationale for immune functions and treatment.

    PubMed Central  PubMed  Google Scholar 

  71. Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15:5323–37.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Minsig Choi and Archana Thakur declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minsig Choi.

Additional information

This article is part of the Topical Collection on Immunotherapy of Malignancy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, M., Thakur, A. Identifying Appropriate Colorectal Cancer-Associated Antigens for the Clinical Trials. Curr Colorectal Cancer Rep 11, 29–36 (2015). https://doi.org/10.1007/s11888-014-0256-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-014-0256-z

Keywords

Navigation