Skip to main content

Should Microsatellite Instability Be Tested in All Cases of Colorectal Cancer?

Abstract

Colorectal cancer (CRC), a relatively frequent tumor in industrialized countries, occurs as a result of several genetic changes. Microsatellite instability (MSI) is a molecular feature that facilitates acquisition of new mutations. MSI caused by alterations in mismatch repair (MMR) genes, genes responsible for repairing DNA mismatches caused by slippage of DNA polymerase, is observed in fifteen percent of CRCs. Lynch syndrome, the most common hereditary colon cancer-genetic syndrome, is responsible for up to 5 % of CRCs and has MSI as a characteristic. When CRC occurs, MSI testing is an important step in identifying patients with Lynch syndrome. Diagnosis of Lynch syndrome has medical implications for both the affected individual and his or her family members. In addition, MSI is a prognostic and predictive factor for cancer patients. As MSI and immunostaining of MMR proteins, which seem to be similar and complementary to MSI, become widely available in pathology laboratories, use of these tests for any newly diagnosed CRC will be an option worth considering. In this review, we focus on the issue of universal MSI screening of all CRCs, irrespective of patient age, to identify more Lynch syndrome cases than are identified by well-established clinical criteria alone. We describe the growing literature in this field and discuss the potential effects of this approach on both the individual and the health-care system.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    PubMed  Article  Google Scholar 

  2. Vogelstein B, Fearon ER, Kern SE, et al. Allelotype of colorectal carcinomas. Science. 1989;244:207–11.

    CAS  PubMed  Article  Google Scholar 

  3. Zhang X, Li J. Era of universal testing of microsatellite instability in colorectal cancer. World J Gastrointest Oncol. 2013;5(2):12–9.

    PubMed Central  PubMed  Article  Google Scholar 

  4. Duval A, Hamelin R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res. 2002;62:2447–54.

    CAS  PubMed  Google Scholar 

  5. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-b receptor in colon cancer cells with microsatellite instability. Science. 1995;268(5215):1336–8.

    CAS  PubMed  Article  Google Scholar 

  6. Rampino N, Yamamoto H, Ionov Y, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science. 1997;275(5302):967–9.

    CAS  PubMed  Article  Google Scholar 

  7. Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96:8681–6.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Curtin K, Slattery ML, Samowitz WS. CpG island methylation in colorectal cancer: past, present and future. Pathol Res Int. 2011;2011:902674.

    Article  Google Scholar 

  9. Pancione M, Remo A, Colantuni V. Genetic and epigenetic events generate multiple pathways in colorectal cancer progression. Pathol Res Int. 2012;2012:509348.

    Article  Google Scholar 

  10. Vasen HF, Blanco I, Aktan-Collan K, et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut. 2013;62:812–23. This article presents up-to-date, comprehensive guidelines for the appropriate management of families with Lynch syndrome.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. Vasen HF, Abdirahman M, Brohet R, et al. One to 2-year surveillance intervals reduce risk of colorectal cancer in families with Lynch syndrome. Gastroenterology. 2010;138(7):2300–6.

    PubMed  Article  Google Scholar 

  12. Loeb LA. Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer. 2011;11:450–7.

    CAS  PubMed  Article  Google Scholar 

  13. Pino MS, Chung DC. Microsatellite instability in the management of colorectal cancer. Expert Rev Gastroenterol Hepatol. 2011;5:385–99. This comprehensive review on the MSI phenotype emphasizes its critical clinical applications.

    PubMed  Article  Google Scholar 

  14. Boland CR, Thibodeeau SN, Hamilton SR, et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–57.

    CAS  PubMed  Google Scholar 

  15. Pal T, Permuth-Wey J, Kumar A, Sellers TA. Systematic review and meta-analysis of ovarian cancers: estimation of microsatellite-high frequency and characterization of mismatch repair deficient tumor histology. Clin Cancer Res. 2008;14:6847–54.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Sammalkorpi H, Alhopuro P, Lehtonen R, et al. Background mutation frequency in microsatellite-unstable colorectal cancer. Cancer Res. 2007;67(12):5691–8.

    CAS  PubMed  Article  Google Scholar 

  17. Laiho P, Launonen V, Lahermo P, et al. Low-level microsatellite instability in most colorectal carcinomas. Cancer Res. 2002;62(4):1166–70.

    CAS  PubMed  Google Scholar 

  18. Perucho M. Correspondence re: Boland CR et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–5257. Cancer Res. 1999;59(1):249–56.

  19. Xicola RM, Llor X, Pons E, et al. Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J Natl Cancer Inst. 2007;99(3):244–52.

    CAS  PubMed  Article  Google Scholar 

  20. Suraweera N, Duval A, Reperant M, et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology. 2002;123(6):1804–11.

    CAS  PubMed  Article  Google Scholar 

  21. Samowitz WS, Slattery ML, Potter JD, et al. BAT-26 and BAT-40 instability in colorectal adenomas and carcinomas and germline polymorphisms. Am J Pathol. 1999;154(6):1637–41.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Pyatt R, Chadwick RB, Johnson CK, et al. Polymorphic variation at the BAT-25 and BAT-26 loci in individuals of African origin. Implications for microsatellite instability testing. Am J Pathol. 1999;155(2):349–53.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Laghi L, Bianchi P, Malesci A. Differences and evolution of the methods for the assessment of microsatellite instability. Oncogene. 2008;27(49):6313–21.

    CAS  PubMed  Article  Google Scholar 

  25. Bianchi F, Galizia E, Catalani R, et al. CAT25 is a mononucleotide marker to identify HNPCC patients. J Mol Diagn. 2009;11(3):248–52.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Musulen E, Blanco I, Carrato C, et al. Usefulness of epithelial cell adhesion molecule expression in the algorithmic approach to Lynch syndrome identification. Hum Pathol. 2013;44:412–6.

    CAS  PubMed  Article  Google Scholar 

  27. Bartley AN, Luthra R, Saraiya DS, et al. Identification of cancer patients with Lynch syndrome: clinically significant discordances and problems in tissue based mismatch repair testing. Cancer Prev Res. 2012;5:320–7.

    Article  Google Scholar 

  28. Rigau V, Sebbagh N, Olschwang S, et al. Microsatellite instability in colorectal carcinoma. The comparison of immunohistochemistry and molecular biology suggests a role for hMSH6 immunostaining. Arch Pathol Lab Med. 2003;127:694–700.

    CAS  PubMed  Google Scholar 

  29. Loukola A, Eklin K, Laiho P, et al. Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res. 2001;61(11):4545–9.

    CAS  PubMed  Google Scholar 

  30. Klarskov L, Holck S, Bernstein I, et al. Challenges in the identification of MSH6-associated colorectal cancer: rectal location, less typical histology, and a subset with retained mismatch repair function. Am J Surg Pathol. 2011;35:1391–9.

    PubMed  Article  Google Scholar 

  31. Aarnio M, Sankila R, Pukkala E, et al. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer. 1999;81:214–8.

    CAS  PubMed  Article  Google Scholar 

  32. Bonadona V, Bonaiti B, Olschwang S, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305:2304–10.

    CAS  PubMed  Article  Google Scholar 

  33. Watson P, Lynch HT. Extracolonic cancer in hereditary nonpolyposis colorectal cancer. Cancer. 1993;71:677–85.

    CAS  PubMed  Article  Google Scholar 

  34. Ligtenberg MJ, Kuiper RP, Chan TL, et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3’ exons of TACSTD1. Nat Genet. 2009;41:112–7.

    CAS  PubMed  Article  Google Scholar 

  35. Kovacs ME, Papp J, Szentirmay Z, et al. Deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome. Hum Mutat. 2009;30:197–203.

    CAS  PubMed  Article  Google Scholar 

  36. Aaltonen LA, Peltomaki P, Mecklin JP, et al. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 1994;54:1645–8.

    CAS  PubMed  Google Scholar 

  37. Vasen HF, Mecklin JP, Khan PM, et al. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum. 1991;34:424–5.

    CAS  PubMed  Article  Google Scholar 

  38. Vasen HF, Watson P, Mecklin JP, et al. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116:1453–6.

    CAS  PubMed  Article  Google Scholar 

  39. Rodriguez-Bigas MA, Boland CR, Hamilton SR, et al. A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst. 1997;89:1758–62.

    CAS  PubMed  Article  Google Scholar 

  40. Pino MS, Chung DC. Application of molecular diagnostics for the detection of Lynch syndrome. Expert Rev Mol Diagn. 2010;10:651–65.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. Syngal S, Fox EA, Eng C, et al. Sensitivity and specificity of clinical criteria for hereditary non-polyposis colorectal cancer associated mutations in MSH2 and MLH1. J Med Genet. 2000;37:641–5.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. Terdiman JP, Gum Jr JR, Conard PG, et al. Efficient detection of hereditary nonpolyposis colorectal cancer gene carriers by screening for tumor microsatellite instability before germ-line genetic testing. Gastroenterology. 2001;120:21–30.

    CAS  PubMed  Article  Google Scholar 

  43. Terdiman JP, Levin TR, Allen BA, et al. Hereditary nonpolyposis colorectal cancer in young colorectal cancer patients: high-risk clinic versus population-based registry. Gastroenterology. 2002;122:940–7.

    CAS  PubMed  Article  Google Scholar 

  44. Pinol V, Castells A, Andreu M, et al. Accuracy of revised Bethesda guidelines, microsatellite instability and immunohistochemistry for the identification of patients with hereditary colorectal cancer. JAMA. 2005;293:1986–94.

    CAS  PubMed  Article  Google Scholar 

  45. Imai K, Yamamoto H. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2009;29(4):673–80.

    Article  Google Scholar 

  46. Wang L, Cunningham JM, Winters JL, et al. BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res. 2003;63(17):5209–12.

    CAS  PubMed  Google Scholar 

  47. Palomaki GE, McClain MR, Melillo S, et al. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet Med. 2009;11(1):42–65.

    PubMed Central  PubMed  Article  Google Scholar 

  48. Bessa X, Ballesté B, Andreu M, et al. A prospective, multicenter, population based study of BRAF mutational analysis for Lynch syndrome screening. Clin Gastroenterol Hepatol. 2008;6(2):206–14.

    CAS  PubMed  Article  Google Scholar 

  49. Toon CW, Walsh MD, Chou A, et al. BRAFV600E immunohistochemistry facilitates universal screening of colorectal cancers for Lynch syndrome. Am J Surg Pathol 2013;37(10):1592–602.

    Google Scholar 

  50. Samowitz WS, Sweeney C, Herric J, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65:6063–9.

    CAS  PubMed  Article  Google Scholar 

  51. Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26:5705–12.

    PubMed  Article  Google Scholar 

  52. Rodriguez-Soler M, Perez-Carbonell L, Guarinos C, et al. Risk of cancer in cases of suspected Lynch syndrome without germline mutation. Gastroenterology. 2013;144:926–32. The authors highlight the issue of cancer risk in those suspected of having Lynch syndrome but without germline mutation. They show that this group of patients has a cancer risk between that of those with Lynch syndrome and that of those with sporadic colorectal cancer.

    CAS  PubMed  Article  Google Scholar 

  53. Boland CR. The mystery of mismatch repair deficiency: Lynch or Lynch-like? Gastroenterology. 2013;144:868–70.

    PubMed  Article  Google Scholar 

  54. Gryfe R, Kim H, Hsieh ET, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 2000;342:69–77.

    CAS  PubMed  Article  Google Scholar 

  55. Watanabe T, Wu TT, Catalano PJ, et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med. 2001;344:1196–206.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  56. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23:609–18.

    CAS  PubMed  Article  Google Scholar 

  57. Benatti P, Gafà R, Barana D, et al. Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res. 2005;11(23):8332–40.

    CAS  PubMed  Article  Google Scholar 

  58. Koopman M, Kortman GA, Mekenkamp L, et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer. 2009;100(2):266–73.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  59. Braun MS, Richman SD, Quirke P, et al. Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol. 2008;26(16):2690–8.

    CAS  PubMed  Article  Google Scholar 

  60. Schwitalle Y, Kloor M, Eiermann S, et al. Immune response against frameshift induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology. 2008;134(4):988–97.

    CAS  PubMed  Article  Google Scholar 

  61. Carethers JM, Chauhan DP, Fink D, et al. Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology. 1999;117:123–31.

    CAS  PubMed  Article  Google Scholar 

  62. Elsaleh H, Joseph D, Grieu F, et al. Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet. 2000;355:1745–50.

    CAS  PubMed  Article  Google Scholar 

  63. Hemminki A, Mecklin JP, Järvinen H, et al. Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology. 2000;119:921–8.

    CAS  PubMed  Article  Google Scholar 

  64. Liang JT, Huang KC, Lai HS, et al. High-frequency microsatellite instability predicts better chemosensitivity to high-dose 5-fluorouracil plus leucovorin chemotherapy for stage IV sporadic colorectal cancer after palliative bowel resection. Int J Cancer. 2002;101:519–25.

    CAS  PubMed  Article  Google Scholar 

  65. Benatti P, Gafà R, Barana D, et al. Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res. 2005;11:8332–40.

    CAS  PubMed  Article  Google Scholar 

  66. Jover R, Zapater P, Castells A, et al. Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut. 2006;55:848–55.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  67. Kim GP, Colangelo LH, Wieand HS, et al. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute–National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol. 2007;25:767–72.

    CAS  PubMed  Article  Google Scholar 

  68. Lamberti C, Lundin S, Bogdanow M, et al. Microsatellite instability did not predict individual survival of unselected patients with colorectal cancer. Int J Colorectal Dis. 2007;22:145–52.

    CAS  PubMed  Article  Google Scholar 

  69. Sargent DJ et al. Confirmation of deficient mismatch repair (dMMR) as a predictive marker for lack of benefit from 5-FU based chemotherapy in stage II and III colon cancer (CC): a pooled molecular reanalysis of randomized chemotherapy trials [abstract]. J Clin Oncol. 2008;26:4008.

    Article  Google Scholar 

  70. Des Guetz G, Schischmanoff O, Nicolas P, et al. Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur J Cancer. 2009;45:1890–6.

    CAS  PubMed  Article  Google Scholar 

  71. Quasar Collaborative Group, Gray R, Barnwell J, McConkey C, et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet. 2007;370(9604):2020–9.

    PubMed  Article  Google Scholar 

  72. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23(3):609–18.

    CAS  PubMed  Article  Google Scholar 

  73. Vilar E, Gruber SB. Microsatellite instability in colorectal cancer—the stable evidence. Nat Rev Clin Oncol. 2010;7(3):153–62.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  74. Sargent DJ, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28(20):3219–26.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  75. Oh YS, Kim DY, Kim YB, et al. Oncologic outcomes after adjuvant chemotherapy using FOLFOX in MSI-H sporadic stage III colon cancer. World J Surg. 2013;37(10):2497–503.

    PubMed  Article  Google Scholar 

  76. Vilar E, Scaltriti M, Balmaña J, et al. Microsatellite instability due to hMLH1 deficiency is associated with increased cytotoxicity to irinotecan in human colorectal cancer cell lines. Br J Cancer. 2008;99(10):1607–12.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  77. Magrini R, Bhonde MR, Hanski ML, et al. Cellular effects of CPT-11 on colon carcinoma cells: dependence on p53 and hMLH1 status. Int J Cancer. 2002;101(1):23–31.

    CAS  PubMed  Article  Google Scholar 

  78. Jacob S, Aguado M, Fallik D, et al. The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res. 2001;61(17):6555–62.

    CAS  PubMed  Google Scholar 

  79. Rodriguez R, Hansen LT, Phear G, et al. Thymidine selectively enhances growth suppressive effects of camptothecin/irinotecan in MSI+ cells and tumors containing a mutation of MRE11. Clin Cancer Res. 2008;14(17):5476–83.

    CAS  PubMed  Article  Google Scholar 

  80. Bertagnolli MM, Niedzwiecki D, Compton CC, et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: cancer and Leukemia Group B Protocol 89803. J Clin Oncol. 2009;27(11):1814–21.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  81. Saltz LB, Niedzwiecki D, Hollis D, et al. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: results of CALGB 89803. J Clin Oncol. 2007;25(23):3456–61.

    CAS  PubMed  Article  Google Scholar 

  82. Fallik D, Borrini F, Boige V, et al. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res. 2003;63(18):5738–44.

    CAS  PubMed  Google Scholar 

  83. Van Cutsem E, Labianca R, Bodoky G, et al. Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. J Clin Oncol. 2009;27(19):3117–25.

    PubMed  Article  Google Scholar 

  84. Tejpar S, Bosman F, Delorenzi M, et al. Microsatellite instability (MSI) in stage II and III colon cancer treated with 5FU-LV or 5FU-LV and irinotecan (PETACC 3-EORTC 40993-SAKK 60/00 trial). J Clin Oncol. 2009;27 Suppl 15:S169.

    Google Scholar 

  85. Burn J, Bishop DT, Mecklin JP, et al. Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome. N Engl J Med. 2008;359:2567–78.

    CAS  PubMed  Article  Google Scholar 

  86. Burn J, Gerdes AM, Macrae F, et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomized controlled trial. Lancet. 2011;378:2081–7.

    PubMed Central  PubMed  Article  Google Scholar 

  87. Rothwell PM, Fowkes FG, Belch JF, et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomized trials. Lancet. 2011;377:31–41.

    CAS  PubMed  Article  Google Scholar 

  88. Hampel H, Frankel WL, Martin E, et al. Screening for the Lynch syndrome (hereditary non-polyposis colorectal cancer). N Eng J Med. 2005;352:1851–60.

    CAS  Article  Google Scholar 

  89. Julié C, Trésallet C, Brouquet A, et al. Identification in daily practice of patients with Lynch syndrome (hereditary nonpolyposis colorectal cancer): revised Bethesda guidelines-based approach versus molecular screening. Am J Gastroenterol. 2008;103:2825–35.

    PubMed  Article  Google Scholar 

  90. Morrison J, Bronner M, Leach BH, et al. Lynch syndrome screening in newly diagnosed colorectal cancer in general pathology practice: from the revised Bethesda guidelines to a universal approach. Scand J Gastroenterol. 2011;46:1340–8.

    PubMed  Article  Google Scholar 

  91. Pérez-Carbonell L, Ruiz-Ponte C, Guarinos C, et al. Comparison between universal molecular screening for Lynch syndrome and revised Bethesda guidelines in a large population-based cohort of patients with colorectal cancer. Gut. 2012;61:865–72. The authors report that in their large population-based cohort with a low prevalence of Lynch syndrome, universal molecular screening had a better sensitivity in detecting Lynch syndrome that was not counterbalanced by a significantly lower specificity.

    PubMed  Article  Google Scholar 

  92. Moreira L, Balaguer F, Lindor N, et al. Identification of Lynch syndrome among patients with colorectal cancer. JAMA. 2012;308(15):1555–65.

    CAS  PubMed  Article  Google Scholar 

  93. Mvundura M, Grosse SD, Hampel H. The cost-effectiveness of genetic testing strategies for Lynch syndrome among newly diagnosed patients with colorectal cancer. Genet Med. 2010;12(2):93–104.

    PubMed  Article  Google Scholar 

  94. Ladabaum U, Wang G, Terdiman J, et al. Strategies to identify the Lynch syndrome among patients with colorectal cancer: a cost-effectiveness analysis. Ann Intern Med. 2011;155(2):69–79.

    PubMed Central  PubMed  Article  Google Scholar 

  95. Resnick K, Straughn Jr JM, Backes F, et al. Lynch syndrome screening strategies among newly diagnosed endometrial cancer patients. Obstet Gynecol. 2009;114:530–6.

    PubMed  Article  Google Scholar 

  96. Heald B, Plesec T, Liu X, et al. Implementation of universal microsatellite and immunohistochemistry screening for diagnosis Lynch syndrome in large academic medical center. J Clin Oncol. 2013;31(10):1336–40. This report from a large academic medical center shows that implementation of universal MSI/IHC testing with genetic counseling and effective multidisciplinary communication results in increased identification of patients with Lynch syndrome.

    PubMed  Article  Google Scholar 

  97. Warrier SK, Trainer AH, Lynch AC, et al. Preoperative diagnosis of Lynch syndrome with DNA mismatch repair immunohistochemistry on a diagnostic biopsy. Dis Colon Rectum. 2011;54:1480–7.

    CAS  PubMed  Article  Google Scholar 

  98. Shia J, Stadler Z, Weiser MR, et al. Immunohistochemical staining for DNA mismatch repair proteins in intestinal tract carcinoma: how reliable are biopsy samples? Am J Surg Pathol. 2011;35:447–54.

    PubMed  Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Guy Rosner and Hana Strul declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Rosner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosner, G., Strul, H. Should Microsatellite Instability Be Tested in All Cases of Colorectal Cancer?. Curr Colorectal Cancer Rep 10, 27–35 (2014). https://doi.org/10.1007/s11888-013-0204-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-013-0204-3

Keywords

  • Colorectal cancer (CRC)
  • Lynch syndrome
  • Mismatch repair system (MMR)
  • Microsatellite instability (MSI)
  • Hypermethylation
  • Immunohistochemical staining (IHC)
  • Universal MSI screening
  • Prognostic marker
  • Predictive marker
  • MLH1
  • MSH2
  • MSH6
  • PMS2
  • BRAF
  • Lynch-like syndrome