Skip to main content

Advertisement

Log in

Blood Biomarkers Linked to Oxidative Stress and Chronic Inflammation for Risk Assessment of Colorectal Neoplasia

  • Molecular Epidemiology (L Jiao, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Colorectal cancer (CRC) is currently the third most common malignancy in the world. The prognosis of CRC is directly related to the stage of the cancer at the time of diagnosis, and survival is significantly better when CRC is diagnosed at an early stage. Consequently, there is an urgent need for the discovery of non-invasive diagnostic markers that can reflect the early events linked to colorectal carcinogenesis. Clinical and experimental data indicate that chronic inflammation and oxidative stress are involved in the development of CRC. In this review, we evaluate risk prediction, the diagnostic and prognostic value of biomarkers related to oxidative stress, antioxidant status, oxidative DNA damage, and the inflammation process in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    Article  PubMed  CAS  Google Scholar 

  2. Levin B, Lieberman DA, Mcfarland B, et al. Screening and surveillance for early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American cancer society, the US Multi-Society Task Force on colorectal cancer, and the American College of Radiology. Gastroenterology. 2008;134:1570–95.

    Article  PubMed  CAS  Google Scholar 

  3. Valdivieso M. Cancer survivors in the United States: a review of the literature and a call to action. Int J Med Sci. 2012;9(2):163–73.

    Article  PubMed  Google Scholar 

  4. Lansdorp-Vogelaar I, Kuntz KM, Knudsen AB, et al. Contribution of screening and survival differences to radical disparities in colorectal cancer rates. Cancer Epidemiol Biomarkers Prev. 2012;21(5):728–36.

    Article  PubMed  Google Scholar 

  5. Greenwald B. A comparison of three stool test for colorectal cancer screening. Medsurg Nurs. 2005;14:292–9.

    PubMed  Google Scholar 

  6. Ransohoff DF. Colon cancer screening in 2005: status and challenges. Gastroenterology. 2005;128:1685–95.

    Article  PubMed  Google Scholar 

  7. Smith RA, Cokkinides V, Eyre HJ. American Cancer Society guidelines for the early detection of cancer. CA Cancer J Clin. 2006;56:11–25.

    Article  PubMed  Google Scholar 

  8. Bretthauer M. Colorectal cancer screening. J Inter Med. 2011;270(2):87–98.

    Article  CAS  Google Scholar 

  9. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319(9):525–32.

    Article  PubMed  CAS  Google Scholar 

  10. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135:1079–99.

    Article  PubMed  CAS  Google Scholar 

  11. Manne U, Shanmugam C, Katkoori VR, Bumpers HL, Grizzle WE. Development and progression of colorectal neoplasia. Cancer Biomark. 2010;9(1–6):235–65.

    PubMed  Google Scholar 

  12. Lin OS. Acquired risk factors for colorectal cancer. Methods Mol Biol. 2009;472:361–72.

    Article  PubMed  Google Scholar 

  13. Huxley RR, Ansary-Moghaddam A, Clifton P, et al. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. Int J Cancer. 2009;125(1):171–80.

    Article  PubMed  CAS  Google Scholar 

  14. Kraus S, Arber N. Inflammation and colorectal cancer. Curr Op Pharmacol. 2009;9:405–10.

    Article  CAS  Google Scholar 

  15. McConnell B, Yang VW. The role of inflammation in the pathogenesis of colorectal cancer. Curr Colorectal Cancer Rep. 2009;5(2):69–74.

    Article  PubMed  Google Scholar 

  16. Xie J, Itzkowitz SH. Cancer in inflammatory bowel disease. World J Gastroenterol. 2008;14(3):378–89.

    Article  PubMed  CAS  Google Scholar 

  17. Grizzle WE, Srivastava S, Manne U. The biology of incipient, pre-invasive or intraepithelial neoplasia. Cancer Biomark. 2010;9(1–6):21–39.

    PubMed  Google Scholar 

  18. Rustgi AK. The genetics of hereditary colon cancer. Genes Dev. 2007;21:2525–38.

    Article  PubMed  CAS  Google Scholar 

  19. Calotta F, Allavena P, Sica A, et al. A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81.

    Article  Google Scholar 

  20. Rizzo A, Pallone F, Monteleone G, et al. Intestinal inflammation and colorectal cancer: a double-edged sword? World J Gastroenterol. 2011;17(26):3092–100.

    PubMed  Google Scholar 

  21. Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.

    Article  PubMed  CAS  Google Scholar 

  22. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  PubMed  CAS  Google Scholar 

  23. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoint preferred definition and conceptual framework. Clin Pharmacol The. 2001;69(3):89–95.

    Google Scholar 

  24. World Health Organization (WHO). Biomarkers in Risk Assessment: Validity and Validation, Environmental Health Criteria Series, 2001, n°22.

  25. Karley D, Gupta D, Tiwari A. Biomarkers: the future of Medical Science to detect Cancer. J Mol Biomarker Diagn. 2011;2:118.

    Google Scholar 

  26. Thomas CM, Sweep CG. Serum tumor markers: past, state of art, and future. Int J Biol Markers. 2001;16(2):73–86.

    PubMed  CAS  Google Scholar 

  27. Etzioni R, Urban N, Ramsey S, et al. The case for early detection. Nat Rev Cancer. 2003;3(4):243–52.

    Article  PubMed  CAS  Google Scholar 

  28. Wild N, Andres H, Rollinger W, et al. A combination of serum Markers for the early Detection of colorectal. Cancer Clin Cancer Res. 2010;16(24):6111–21.

    Article  CAS  Google Scholar 

  29. •• Leufkens AM, van Duijnhoven FJ, Woudt SH, et al. Biomarkers of oxidative stress and risk of developing colorectal cancer: a cohort-nested case–control study in the European Prospective Investigation Into Cancer and Nutrition. Am J Epidemiol. 2012;175:653–63. A well-organized prospective study investigating oxidative stress biomarker for early detection of colorectal cancer.

    Article  PubMed  Google Scholar 

  30. Loft S, Møller P, Cooke MS, et al. Antioxidant vitamins and cancer risk: is oxidative damage to DNA a relevant biomarker? Eur J Nutr. 2008;47(2):19–28.

    Article  PubMed  CAS  Google Scholar 

  31. Cao G, Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem. 1998;44(6):1309–15.

    PubMed  CAS  Google Scholar 

  32. Van Duijnhoven FJB, Bueno-De-Mesquita HB, Calligaro M, et al. Blood lipid and lipoprotein concentrations and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition. Gut. 2011;60:1094–102.

    Article  PubMed  Google Scholar 

  33. Schoen RE, Tangen CM, Kuller LH, et al. Increased blood glucose and insulin, body size, and incident colorectal cancer. J Natl Cancer Inst. 1999;91:1147–54.

    Article  PubMed  CAS  Google Scholar 

  34. Ahmed RL, Schmitz KH, Anderson KE, et al. The metabolic syndrome and risk of incident colorectal cancer. Cancer. 2006;107:28–36.

    Article  PubMed  Google Scholar 

  35. Ahn J, Lin U, Weinstrein SJ, et al. Prediagnostic total and high-density lipoprotein cholesterol and risk of cancer. Cancer Epidemiol Biomarkers Prev. 2009;18:2814–21.

    Article  PubMed  CAS  Google Scholar 

  36. Esteve E, Ricart W, Fernandez-Real JM. Dyslipidemia and inflammation: an evolutionary conserved mechanism. Clin Nutr. 2005;24:16–31.

    Article  PubMed  CAS  Google Scholar 

  37. Kim S, Keku TO, Martin C, et al. Circulating levels of inflammatory cytokines and risk of colorectal adenomas. Cancer Res. 2008;68:323–8.

    Article  PubMed  CAS  Google Scholar 

  38. Kontush A, de Faria EC, Chantepie S, et al. A normotriglyceridemic, low HDL-cholesterol phenotype is characterised by elevated oxidative stress and HDL particles with attenuated antioxidative activity. Atherosclerosis. 2005;182:277–85.

    Article  PubMed  CAS  Google Scholar 

  39. Vekic J, Kotur-Stevuljevic J, Jelic-Ivanovic Z, et al. Association of oxidative stress and PON1 with LDL and HDL particle size in middle-aged subjects. Eur J Clin Invest. 2007;37:715–23.

    Article  PubMed  CAS  Google Scholar 

  40. Napoli C, de Nigris F, Palinski W. Multiple role of reactive oxygen species in the arterial wall. J Cell Biochem. 2001;82:674–82.

    Article  PubMed  CAS  Google Scholar 

  41. Trevisan M, Liu J, Muti P, et al. Markers of insulin resistance and colorectal cancer mortality. Cancer Epidemiol Biomarkers Prev. 2001;10:937–41.

    PubMed  CAS  Google Scholar 

  42. Suzuki K, Ito Y, Wakai K, et al. Serum oxidized low-density lipoprotein levels and risk of colorectal cancer: a case–control study nested in the Japan Collaborative Cohort Study. Cancer Epidemiol Biomarkers Prev. 2004;13(11):1781–7.

    PubMed  CAS  Google Scholar 

  43. Cai F, Dupertuis YM, Pichard C. Role of polyunsaturated fatty acids and lipid peroxidation on colorectal cancer risk and treatment. Curr Opin Clin Nutr Metab Care. 2012;15:99–106.

    Article  PubMed  CAS  Google Scholar 

  44. Kekec Y, Paydas S, Tuli A, et al. Antioxidant enzyme levels in cases with gastrointestinal cancer. Eur J Internal Med. 2009;20:403–6.

    Article  CAS  Google Scholar 

  45. Chandramathi S, Suresh K, Anita ZB, et al. Comparative assessment of urinary oxidative indices in breast and colorectal cancer patients. J Cancer Res Clin Oncol. 2009;135:319–23.

    Article  PubMed  CAS  Google Scholar 

  46. Leung EY, Crozier JE, Talwar D, et al. Vitamins antioxidants, lipid peroxidation, tumor stage, the systematic inflammatory response and survival in patients with colorectal cancer. Int J Cancer. 2008;123:2460–4.

    Article  PubMed  CAS  Google Scholar 

  47. Surinenaite B, Prasmickiene G, Milasiene V, et al. The influence of surgical treatment and red blood cell transfusion on changes in antioxidant and immune system parameters in colorectal cancer patients. Medicina. 2009;45:785–91.

    PubMed  Google Scholar 

  48. Srzydlewska E, Sulkowski S, Koda M, et al. Lipid peroxidation and antioxidant status in colorectal cancer. World J Gastroenterol. 2005;11:28–34.

    Google Scholar 

  49. Dincer Y, Himmetoglu S, Akcay T, et al. Prognostic significances of oxidative DNA damage evaluated by 8-hydroxy-deoxyguanosine and antioxidant enzymes in patients undergoing resection of gastric and colon carcinoma. Neoplasma. 2007;54:131–6.

    PubMed  CAS  Google Scholar 

  50. Chan D, Wang F, Zhao YS, et al. Evolution of oxidative stress in colorectal cancer patients. Biomed Environ Sci. 2008;21:286–9.

    Article  Google Scholar 

  51. Gur T, Demir H, Kotan MC. Tumor markers and biochemical parameters in colon cancer patients before and after chemotherapy. Asian Pac J Cancer Prev. 2011;12(11):3147–50.

    PubMed  Google Scholar 

  52. Scibior D, Skczycki M, Podsian H, et al. Glutathione level and glutathione-dependent enzyme activities in blood serum of patient with gastrointestinal tract tumor. Clin Biochem. 2008;41:852–8.

    Article  PubMed  CAS  Google Scholar 

  53. Economopoulos KP, Sergentanis TN. GSTM1, GSTT1, GSTP1, GSTA1 and colorectal risk: a comprehensive meta-analysis. European J Cancer. 2010;46:1617–31.

    Article  CAS  Google Scholar 

  54. Nomani H, Ghobadloo SM, Yaghmaei B, et al. Glutathione S-transferases activity in patients with colorectal cancer. Clin Biochem. 2005;38:621–4.

    Article  PubMed  CAS  Google Scholar 

  55. Maffei F, Angeloni C, Malaguti M, et al. Plasma antioxidant enzymes and clastogenic factors as possible biomarkers of colorectal cancer risk. Mutat Res. 2011;714:88–92.

    Article  PubMed  CAS  Google Scholar 

  56. Fang YZ, Yang S, Wu G. Free radical antioxidant, and nutrition. Nutrition. 2002;2:872–9.

    Article  Google Scholar 

  57. Jiang J, Suzuki S, Xiang J, et al. Plasma carotenoid, α-tocopherol and retinol concentrations and risk of colorectal adenomas: a case–control study in Japan. Cancer Let. 2005;226:133–41.

    Article  CAS  Google Scholar 

  58. Wakai K, Suzuki K, Ito Y, et al. Serum carotenoids, retinol, and tocopherols, and colorectal cancer risk in a Japanese cohort: effect modification by sex for carotenoids. Nutr Cancer. 2005;51(1):13–24.

    Article  PubMed  CAS  Google Scholar 

  59. Breuer-Katschinski B, Nemes K, Marr A, et al. Relation of serum antioxidant vitamins to the risk of colorectal adenoma. Digestion. 2001;63(1):43–8.

    Article  PubMed  CAS  Google Scholar 

  60. Ingles SA, Bird CL, Shikany JJM, et al. Plasma tocopherol and prevalence of colorectal adenomas in a multiethnic population. Cancer Res. 1998;58(4):661–6.

    PubMed  CAS  Google Scholar 

  61. Saygili EI, Konukoglu D, Papila C, et al. Levels of plasma vitamin E, vitamin C, TBARS, and cholesterol in male patients with colorectal tumors. Biochemistry. 2003;68(3):325–8.

    PubMed  CAS  Google Scholar 

  62. Ju J, Picinich SC, Yang Z. Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis. 2010;31(4):533–42.

    Article  PubMed  CAS  Google Scholar 

  63. Olinski R, Gackowski D, Rozalski R, et al. Oxidative DNA damage in cancer patients: a cause or a consequence of the disease development? Mutat Res 2003;531:177–90.

    Article  PubMed  CAS  Google Scholar 

  64. Olinski R, Gackowski D, Foksinski M, et al. Oxidative DNA damage: assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome. Free Radic Biol Med. 2002;33:192–200.

    Article  PubMed  CAS  Google Scholar 

  65. • Tudek B, Speina E. Oxidatively damaged DNA and its repair in colon carcinogenesis. Mutat Res. 2012;736:82–92. Comprehensive review about oxidatively damaged DNA and its implication in colorectal carcinogenesis.

    Article  PubMed  CAS  Google Scholar 

  66. Russo MT, Blasi MF, Chiera F, et al. The oxidized deoxynucleoside triphosphate pool is a significant contributor to genetic instability in mismatch repair-deficient cells. Mol Cell Biol. 2004;24:465–74.

    Article  PubMed  CAS  Google Scholar 

  67. Speina E, Arczewska KD, Gackowski D, et al. Contribution of hMTH1 to the maintenance of 8-oxoguanine levels in lung DNA of non-small-cell lung cancer patients. J Natl Cancer Inst 2005;97:384–95.

    Article  PubMed  CAS  Google Scholar 

  68. Cheng KC, Cahill DS, Kasai H, et al. 8-Hydroxyguanine an abundant form of oxidative DNA damage, causes G- - - -T and A- - - -C substitutions. J Biol Chem. 1992;267:166–72.

    PubMed  CAS  Google Scholar 

  69. Gackowski D, Banaszkiewicz Z, Rozalski R, et al. Persistent oxidative stress in colorectal carcinoma patients. Int J Cancer. 2002;101:395–7.

    Article  PubMed  CAS  Google Scholar 

  70. Guz J, Foksinski M, Siomek A, et al. The relationship between 8-oxo-7,8-dihydro-2′-deoxyguanosine level and extent of cytosine methylation in leukocytes DNA of healthy subjects and in patients with colon adenomas and carcinomas. Mutat Res. 2008;640:170–3.

    Article  PubMed  CAS  Google Scholar 

  71. Obtulowicz T, Swoboda M, Speina E. Oxidative stress and 8-oxoguanine repair are enhanced in colon adenoma and carcinoma patients. Mutagenesis. 2010;25(5):463–71.

    Article  PubMed  CAS  Google Scholar 

  72. Sato T, Tadeka H, Otake S, et al. Increased plasma levels of 8-hydroxydeoxyguanosine are associated with development of colorectal tumors. J Clin Biochem Nutr. 2010;47(1):59–63.

    Article  PubMed  CAS  Google Scholar 

  73. Kallay E, Adlercreutz H, Farhan H, et al. Phytoestrogens regulate vitamin D metabolism in the mouse colon: relevance for colon tumor prevention and therapy. J Nutr. 2002;132:3490S–3S.

    PubMed  CAS  Google Scholar 

  74. Fedirko V, Bostick RM, Long Q, et al. Effects of supplemental vitamin D and calcium on oxidative DNA damage marker in normal colorectal mucosa: a randomized clinical trial. Cancer Epidemiol Biomarkers Prev. 2010;19(1):280–91.

    Article  PubMed  CAS  Google Scholar 

  75. Hopkins MH, Owen J, Ahearn T, et al. Effects of supplemental vitamin D and calcium on biomarkers of inflammation in colorectal adenoma patients: a randomized, controlled clinical trial. Cancer Prev Res. 2011;4(10):1645–54.

    Article  CAS  Google Scholar 

  76. Lotem J, Sachs L. Different mechanisms for suppression of apoptosis by cytokines and calcium mobilizing compounds. Proc Natl Acad Sci U S A. 1998;95:4601–6.

    Article  PubMed  CAS  Google Scholar 

  77. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6:24–37.

    Article  PubMed  Google Scholar 

  78. Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem. 2004;279:48487–90.

    Article  PubMed  CAS  Google Scholar 

  79. Il’yasova D, Colbert LH, Harris TB, et al. Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol Biomarkers Prev. 2005;14:2413–8.

    Article  PubMed  Google Scholar 

  80. McMillan DC, Talwar D, Sattar N, et al. The relationship between reduced vitamin antioxidant concentrations and the systemic inflammatory response in patients with common solid tumours. Clin Nutr. 2002;21(2):161–4.

    Article  PubMed  CAS  Google Scholar 

  81. Engwegen JY, Helgason HH, Cats A, et al. Identification of serum proteins discriminating colorectal cancer patients and healthy controls using surface-enhanced laser desorption ionisation–time of flight mass spectrometry. World J Gastroenterol. 2006;12(10):1536–44.

    PubMed  CAS  Google Scholar 

  82. Erlinger TP, Platz EA, Rifai N, et al. C-reactive protein and the risk of incident colorectal cancer. JAMA. 2004;291:585–90.

    Article  PubMed  CAS  Google Scholar 

  83. Otani T, Iwasaki M, Sasazuki S, et al. Plasma C-reactive protein and risk of colorectal cancer in a nested case–control study: Japan Public Health Center-based prospective study. Cancer Epidemiol Biomarkers Prev. 2006;15:690–5.

    Article  PubMed  CAS  Google Scholar 

  84. Gunter MJ, Stolzenberg-Solomon R, Cross AJ, et al. A prospective study of serum C-reactive protein and colorectal cancer risk in men. Cancer Res. 2006;66:2483–7.

    Article  PubMed  CAS  Google Scholar 

  85. Zhang SM, Buring JE, Lee IM, et al. C-reactive protein levels are not associated with increased risk for colorectal cancer in women. Ann Intern Med. 2005;142:425–32.

    PubMed  CAS  Google Scholar 

  86. Ito Y, Suzuki K, Tamakoshi K, et al. Colorectal cancer and serum C-reactive protein levels: a case–control study nested in the JACC Study. J Epidemiol. 2005;15 Suppl 2:S185–9.

    Article  PubMed  Google Scholar 

  87. Tsilidis KK, Branchini C, Guallar E, et al. C-reactive protein and colorectal cancer risk: a systematic review of prospective studies. Int J Cancer. 2008;1:1133–40.

    Article  Google Scholar 

  88. •• Chang AT, Ogino S, Giovannucci EL. Inflammatory Markers are associated with risk of colorectal cancer and chemopreventive response to anti-inflammatory drugs. Gastroenterology. 2011;140:799–808. A well-written paper about the inflammatory markers linked to colorectal cancer risk.

    Article  Google Scholar 

  89. Jiao L, Taylor PR, Weinstein SJ, et al. Advances glycation end products, soluble receptor for advanced glycation end products, and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2011;20(7):1430–8.

    Article  PubMed  CAS  Google Scholar 

  90. Jaio L, Chen L, Alsarraj A, et al. Plasma soluble receptor for advanced glycation end-products and risk of colorectal adenoma. Int J Mol Epidemiol Genet. 2012;3(4):294–304.

    Google Scholar 

  91. Devangelio E, Santilli F, Formoso G, et al. Soluble RAGE in type 2 diabetes: association with oxidative stress. Free Radic Biol Med. 2007;43(4):511–8.

    Article  PubMed  CAS  Google Scholar 

  92. Brown DA, Hance KW, Rogers CJ, et al. Serum macrophage inhibitory cytokine-1 (MIC-1/GDF15): a potential screening tool for the prevention of colon Cancer? Cancer Epidemiol Biomarkers Prev. 2012;21(2):337–46.

    Article  PubMed  CAS  Google Scholar 

  93. Toriola AT, Cheng TY, Neuhouser ML, et al. Biomarkers of inflammation are associated with colorectal cancer risk in women but are not suitable as early detection markers. Int J Cancer. 2012. doi:10.1002/ijc27942.

  94. Tao S, Haug U, Kuhn K, et al. Comparison and combination of blood-based inflammatory markers with faecal occult blood test for non-invasive colorectal cancer screening. Br J Cancer. 2012;106(8):1424–30.

    Article  PubMed  CAS  Google Scholar 

  95. Goodman M, Bostick RM, Gross M, et al. Combined measure of pro- and anti-oxidant exposures in relation to prostate cancer and colorectal adenoma risk: an update. Ann Epidemiol. 2010;20(12):955–7.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Maffei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maffei, F., Angelini, S., Cantelli Forti, G. et al. Blood Biomarkers Linked to Oxidative Stress and Chronic Inflammation for Risk Assessment of Colorectal Neoplasia. Curr Colorectal Cancer Rep 9, 85–94 (2013). https://doi.org/10.1007/s11888-012-0156-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-012-0156-z

Keywords

Navigation