Skip to main content

Advertisement

Log in

New Drugs in the Frontier of Treatment of Metastatic Colorectal Cancer

  • Therapeutic Approaches to Metastatic Colorectal Cancers (E Díaz-Rubio, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

There have been great strides made in colon cancer therapy over the last 20 years, with the addition of oxaliplatin and irinotecan to the 5-fluorouracil backbone, and introduction of biologic agents targeting the vascular endothelial growth factor and epidermal growth factor receptor (EGFR) pathways. Across the world researchers have elucidated the pathways involved in colon cancer tumorigenesis, and developed drugs designed to inhibit specific targets and overcome resistance to therapy. This article reviews drugs targeting angiogenesis, the EGFR pathway, the PI3K/Akt/mTOR pathway, and discusses additional novel agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Howlader N, Noone AM, Krapcho M, et al. (eds). SEER Cancer Statistics Review, 1975-2008, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2008/, based on November 2010 SEER data submission, posted to the SEER web site, 2011. Accessed March 2012.

  2. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  PubMed  CAS  Google Scholar 

  3. Kozloff M, Yood MU, Berlin J, et al. Clinical outcomes associated with bevacizumab-containing treatment of metastatic colorectal cancer: the BRiTE observational cohort study. Oncologist. 2009;9:862–70.

    Article  Google Scholar 

  4. Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–9.

    Article  PubMed  CAS  Google Scholar 

  5. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337–45.

    Article  PubMed  CAS  Google Scholar 

  6. • Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17. This article reports the phase III trial of FOLFIRI and cetuximab in patients with mCRC, and its efficacy in KRAS wild-type tumors.

    Article  PubMed  Google Scholar 

  7. • Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX-4) versus FOLFOX-4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010;28:4697–705. This article reports the phase III trial of FOLFOX and panitumumab in the first-line setting in patients with mCRC.

    Article  PubMed  CAS  Google Scholar 

  8. • Peeters M, Price TJ, Cervantes A, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as a second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28:4706–13. This article reports the phase III trial of FOLFIRI and panitumumab in the second-line setting in patients with mCRC.

    Article  PubMed  CAS  Google Scholar 

  9. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–49.

    Article  PubMed  CAS  Google Scholar 

  10. Hicklin DJ, Ellis LM. Role of vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23:1011–27.

    Article  PubMed  CAS  Google Scholar 

  11. Lee JC, Chow NH, Want ST, et al. Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur J Cancer. 2000;36:748–53.

    Article  PubMed  CAS  Google Scholar 

  12. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumor activity. Nat Rev Cancer. 2008;8:579–91.

    Article  PubMed  CAS  Google Scholar 

  13. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  PubMed  CAS  Google Scholar 

  14. Gordon MS, Margolin K, Talpaz M, et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol. 2001;19:843–50.

    PubMed  CAS  Google Scholar 

  15. Avastin-based regimen extends survival when continued beyond initial treatment in patients with metastatic colorectal cancer. Investor Update. http://www.roche.com/investors/ir_update/inv-update-2012-01-26.htm. Accessed April 16, 2012.

  16. Holash J, Davis S, Papadopoulos N, et al. VEGF Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 2002;99:11393–8.

    Article  PubMed  CAS  Google Scholar 

  17. Willett CD, Duda DG, Di Tomaso E, et al. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol. 2009;27:3020–6.

    Article  PubMed  CAS  Google Scholar 

  18. • Van Cutsem E, Tabernero J, Lakomy R, et al. Intravenous (IV) aflibercept versus placebo in combination with irinotecan/5-FU (FOLFIRI) for second-line treatment of metastatic colorectal cancer (MCRC): results of a multinational Phase 3 trial (EFC10262-VELOUR). Ann Oncol. 2011;22:abstract O-0024. This abstract reports results from the phase III VELOUR trial, in which patients are randomized to aflibercept vs placebo in addition to FOLFIRI.

  19. Tabernero J, Van Cutsem E, Lakomy R, et al. Results from VELOUR, a phase 3 study of aflibercept versus placebo in combination with FOLFIRI for the treatment of patients with previously treated metastatic colorectal cancer. Ann Oncol. 2011 (suppl): abstract 6LBA.

  20. Garcia-Carbonero R, Riveria F, Maurel J, et al. A phase II, open-label study evaluating the safety and efficacy of ramucirumab combined with mFOLFOX-6 as first-line therapy in patients (pts) with metastatic colorectal cancer (mCRC): CP12-0709/NCT00862784. J Clin Oncol. 2012;30:abstract 533.

  21. Kopetz S, Hoff PM, Eng C, et al. Levels of angiogenic cytokines prior to disease progression in metastatic colorectal cancer patients treated with bevacizumab. Presented at 2009 Gastrointestinal Cancers Symposium, abstract 292.

  22. Finn RS, Kang Y-K, Mulcahy M, et al. Phase II, open-label study of brivanib as second-line therapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2012;18:2090–8.

    Article  PubMed  CAS  Google Scholar 

  23. • Siu LL, Shapiro JD, Jonker DJ, et al. Phase III randomized trial of cetuximab (CET) plus either brivanib alaninate (BRIV) or placebo in patients (pts) with metastatic (MET) chemotherapy refractory K-RAS wild-type (WT) colorectal carcinoma (CRC): The NCIC Clinical Trials Group and AGITG CO.20 trial. J Clin Oncol. 2012;30:abstract 386. This abstract reports the results from the phase III trial of cetuximab vs. cetuximab and brivanib alalinate in treatment-refractory patients with mCRC.

  24. Wilhelm SM, Dumas J, Adnane L, et al. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129:245–55.

    Article  PubMed  CAS  Google Scholar 

  25. • Grothey A, Sobrero AF, Siena S, et al. Results of a phase III randomized, double-blind, placebo-controlled, multicenter trial (CORRECT) of regorafenib plus best supportive care (BSC) versus placebo plus BSC in patients (pts) with metastatic colorectal cancer (mCRC) who have progressed after standard therapies. J Clin Oncol. 2012;30:abstract LBA385. This abstract reports the results from the CORRECT trial, a phase III trial in which patients with treatment-refractory mCRC are randomized to regorafenib and BSC vs. BSC and placebo.

  26. Prenen H, D’Haens G, Capdevila J, et al. A phase I dose escalation study of BIBF 1120 combined with FOLFOX in metastatic colorectal cancer (mCRC) patients (pts). J Clin Oncol. 2010;28:abstract e14054.

  27. Alghisi GC, Ruegg C. Vascular integrins in tumor angiogenesis: mediators and therapeutic targets. Endothelium. 2006;13:113–35.

    Article  PubMed  CAS  Google Scholar 

  28. Funahashi Y, Sugi NH, Semba T, et al. Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin alpha2subunit on endothelium. Cancer Res. 2002;62:6116–23.

    PubMed  CAS  Google Scholar 

  29. Mita M, Kelly KR, Mita A, et al. Phase I study of E7820, an oral inhibitor of integrin alpha-2 expression with antiangiogenic properties, in patients with advanced malignancies. Clin Cancer Res. 2011;17:193–200.

    Article  PubMed  CAS  Google Scholar 

  30. Sawyer MB, Iqbal S, Lenz H, et al. Phase II study of E7820 in combination with cetuximab in subject (pts) with metastatic and refractory colorectal cancer (CRC). J Clin Oncol. 2010;28:abstract 3537.

  31. Jones JT, Akita RW, Sliwkowski MX. Binding specificities and affinities of EGF domains for ErbB receptors. FEBS Lett. 1999;447:227–31.

    Article  PubMed  CAS  Google Scholar 

  32. Yarden Y, Sliwkowski MX. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol. 2001;2:127–37.

    Article  PubMed  CAS  Google Scholar 

  33. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.

    Article  PubMed  CAS  Google Scholar 

  34. Van Cutsem E, Lang I, Folprecht G, et al. Cetuximab plus FOLFIRI: Final data from the CRYSTAL study on the association of KRAS and BRAF biomarker status with treatment outcome. J Clin Oncol. 2010;28:abstract 3570.

  35. Maughan TS, Adams R, Smith CG, et al. Identification of potentially responsive subsets when cetuximab is added to oxaliplatin-fluoropyrimidine chemotherapy (CT) in first-line advanced colorectal cancer (aCRC): Mature results of the MRC COIN trial. J Clin Oncol. 2010;28:abstract 3502.

  36. http://clinicaltrials.gov/ct2/show/NCT00622674?term=cetuximab%2C+bortezomib%2C+colorectal+cancer&rank=1. Accessed April 18, 2012.

  37. http://clinicaltrials.gov/ct2/show/NCT01504477?term=panitumumab%2C+bortezomib%2C+colorectal+cancer&rank=1. Accessed April 18, 2012.

  38. Eng C, Van Cutsem E, Nowara E, et al. A randomized, phase Ib/II trial of rilotumumab (AMG;ril) or ganitumab (AMG479;gan) with panitumumab (pmab) versus pmab alone in patients (pts) with wild-type (WT) KRAS metastatic colorectal cancer (mCRC): primary and biomarker analyses. J Clin Oncol. 2011;29:abstract 3500.

  39. Shahda S, Yu M, Picus J, et al. Phase I study of everolimus (RAD001) with irinotecan (Iri) and cetuximab (C) in second-line metastatic colorectal cancer (mCRC): Hoosier Oncology Group G105-102- Final report. J Clin Oncol. 2011;29:abstract 3587.

  40. Weickhardt AJ, Price TJ, Chong G, et al. Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: preclinical evaluation and results of the phase II DUX study in chemotherapy-refractory, Advanced Colorectal Cancer. J Clin Oncol. 2012:http://jco.ascopubs.org/cgi/doi/10.1200/JCO.2011.38.6599.

  41. Tamayo MB, Cornelio GH, Bautista JB, et al. A phase Ib/IIa, dose-escalating, safety, and efficacy study of Imprime PGG and cetuximab in patients with advanced colorectal cancer (CRC). J Clin Oncol. 2010;28:abstract e14103.

  42. Viloria-Petit A, Crombet T, Joth S, et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res. 2001;61:5090–101.

    PubMed  CAS  Google Scholar 

  43. Ciardiello F, Bianco R, Caputo R, et al. Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to anti-epidermal growth factor receptor therapy. Clin Cancer Res. 2004;15:784–93.

    Article  Google Scholar 

  44. Meyerhardt JA, Schrag D, Kulke M, et al. Phase I study of cetuximab, irinotecan, and vandetanib (ZD6474) in previously treated metastatic colorectal cancer (mCRC). J Clin Oncol. 2010;28:abstract e14055.

  45. Tice DA, Biscardi JS, Nickles AL, et al. Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci USA. 1999;96:1415–20.

    Article  PubMed  CAS  Google Scholar 

  46. Lieu CH, Wolff RA, Eng C, et al. Phase Ib study of the Src inhibitor dasatinib with FOLFOX and cetuximab in metastatic colorectal cancer. J Clin Oncol. 2010;28:abstract 3536.

  47. Trusolino L, Bertotti A, Comoglio PM. MET signaling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11:834–48.

    Article  PubMed  CAS  Google Scholar 

  48. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.

    Article  PubMed  CAS  Google Scholar 

  49. Bessudo A, Bendell JC, Gabrail N, et al. Phase I results of the randomized, placebo controlled, phase I/II study of the novel oral c-MET inhibitor, ARQ 197, irinotecan (CPT-11), and cetuximab (C) in patients (pts) with wild-type (WT) KRAS metastatic colorectal cancer (mCRC) who have received front-line systemic therapy. J Clin Oncol. 2011;29:abstract 3582.

  50. Matar P, Rojo F, Cassia R, et al. Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Clin Cancer Res. 2004;10:6487–501.

    Article  PubMed  CAS  Google Scholar 

  51. Frank DJ, Conte NK, Brooks W, et al. A phase II trial of lapatinib and capecitabine for patients with refractory advanced colorectal adenocarcinoma. J Clin Oncol. 2010;28:e14092.

    Article  Google Scholar 

  52. Samuels Y, Wang BA, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.

    Article  PubMed  CAS  Google Scholar 

  53. Rychahou PG, Kang J, Gulhati P, et al. Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci USA. 2008;104:20315–20.

    Article  Google Scholar 

  54. LoPiccolo J, Blumenthal GM, Bernstein WB, et al. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat. 2008;11:32–50.

    Article  PubMed  CAS  Google Scholar 

  55. Bendell JC, Nemunaitis J, Vukelja SJ, et al. Randomized placebo-controlled phase II trial of perifosine plus capecitabine as second- or third-line therapy in patients with metastatic colorectal cancer. J Clin Oncol. 2011;29:4394–400.

    Article  PubMed  CAS  Google Scholar 

  56. Aeterna Zentaris Announces Top-Line Data from the Perifosine Phase 3 Trial in Refractory Advanced Colorectal Cancer. News Releases. http://www.aezsinc.com/en/page.php?p=60&q=500. Accessed April 16, 2012.

  57. Bianco R, Garofalo S, Rosa R, et al. Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumor sensitive and resistant to anti-EGFR drugs. Br J Cancer. 2008;98:923–30.

    Article  PubMed  CAS  Google Scholar 

  58. Bijnsdopr IV, Peters GJ, Temmink OH, et al. Differential activation of cell death and autophagy results in an increased cytotoxic potential for trifluorothymidine compared to 5-fluoruracil in colon cancer cells. Int J Cancer. 2010;126:2457–68.

    Google Scholar 

  59. Temmink OH, Hoebe EK, van der Born K, et al. Mechanism of trifluorthymidine potentiation of oxaliplatin-induced cytotoxicity to colorectal cancer cells. Br J Cancer. 2007;96:231–40.

    Article  PubMed  CAS  Google Scholar 

  60. Wolff RA, Hoff PM, Mita A, et al. A phase I trial of TAS-102 administered on a three times a day schedule in patients with solid tumors. J Clin Oncol. 2006;ASCO Annual Meeting Proceedings Part 1;24:abstract 2053.

  61. Nishina T, Yoshino T, Mizunuma N, et al. Therapeutic effect of TAS-102(A) in patients (pts) with metastatic colorectal cancer (mCRC) refractory to standard chemotherapy by the Kohne model (Km). J Clin Oncol. 2012;30:abstract 650.

  62. Ame JC, Spenlehauer C, de Murcia G. The PARP superfamily. Bioessays. 2004;26:882–93.

    Article  PubMed  CAS  Google Scholar 

  63. Schreiber V, Ame JC, Dolle P, et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem. 2002;277:23028–36.

    Article  PubMed  CAS  Google Scholar 

  64. Alderson T. New targets for cancer chemotherapy–poly(ADP-ribosylation) processing and polyisoprene metabolism. Biol Rev Camb Philos Soc. 1990;65:623–41.

    Article  PubMed  CAS  Google Scholar 

  65. Pishvaian MJ, Slack R, Witkiewicz A, et al. A phase II study of the PARP inhibitor ABT-888 plus temozolomide in patients with heavily pretreated, metastatic colorectal cancer. J Clin Oncol. 2011;29:abstract 3502.

Download references

Disclosure

C. Wu: none; R. M. Goldberg: DSMB member (Lilly), consultancy (Genomic Health Inst.), and speakers’ bureaus (Frenius Kaba).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Goldberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Goldberg, R.M. New Drugs in the Frontier of Treatment of Metastatic Colorectal Cancer. Curr Colorectal Cancer Rep 8, 161–169 (2012). https://doi.org/10.1007/s11888-012-0127-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-012-0127-4

Keywords

Navigation