Skip to main content

Advertisement

Log in

Small-pool PCR analysis of microsatellite instability in HNPCC

  • Published:
Current Colorectal Cancer Reports

Abstract

The contributions and limitations of the traditional method for evaluating microsatellite instability by standard polymerase chain reaction (PCR) in identifying mismatch repair (MMR) gene mutations in the Lynch syndrome form of hereditary nonpolyposis colon cancer (HNPCC) are discussed. A new form of HNPCC (familial colon cancer type X or FCCX), in which deleterious mutations in major MMR genes and microsatellite instability have not been identified, was viewed as possibly having attenuating mutations in MMR genes as its genetic basis. A highly sensitive and quantitative method of microsatellite instability analysis, small-pool PCR, is needed to explore this possibility, and small-pool PCR procedures to address that task must be validated. An algorithm for the use of small-pool PCR to identify patients with FCCX having such attenuating mutations is put forward as a means of detecting single nucleotide polymorphisms (SNPs) for the future diagnosis of cancer in those at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Weber JL: Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 1990, 7:524–530.

    Article  PubMed  CAS  Google Scholar 

  2. Collins JR, Stephens RM, Gold B, et al.: An exhaustive DNA micro-satellite map of the human genome using high performance computing. Genomics 2003, 82:10–19.

    Article  PubMed  CAS  Google Scholar 

  3. Edwards A, Civitello A, Hammond HA, et al.: DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 1991, 49:746–756.

    PubMed  CAS  Google Scholar 

  4. Loeb LA: Microsatellite instability: marker of a mutator phenotype. Cancer Res 1994, 54:5059–5063.

    PubMed  CAS  Google Scholar 

  5. Ionov Y, Peinado MA, Malkhosyan S, et al.: Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993, 363:558–561.

    Article  PubMed  CAS  Google Scholar 

  6. Aaltonen LA, Peltomaki P, Leach, FS, et al.: Clues to the pathogenesis of familial colorectal cancer. Science 1993, 260:812–816.

    Article  PubMed  CAS  Google Scholar 

  7. Thibodeau SN, Bren G, Schaid D: Microsatellite instability in cancer of the proximal colon. Science 1993, 260:816–819.

    Article  PubMed  CAS  Google Scholar 

  8. Fishel R, Lescoe MK, Rao MR, et al.: The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993, 75:1027–1038.

    Article  PubMed  CAS  Google Scholar 

  9. Kane MF, Loda M, Gaida GM, et al.: Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 1997, 57:808–811.

    PubMed  CAS  Google Scholar 

  10. Lynch HT: Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology 1993, 104:1535–1549.

    PubMed  CAS  Google Scholar 

  11. Hampel H, Frankel WL, Martin E, et al.: Screen for the Lynch syndrome (hereditary nonpolyposis colon cancer). N Engl J Med 2005, 352:1851–1860.

    Article  PubMed  CAS  Google Scholar 

  12. Risinger JI, Barrett JC, Watson P, et al.: Molecular genetic evidence of the occurrence of breast cancer as an integral tumor in patients with the hereditary nonpolyposis colorectal carcinoma syndrome. Cancer 1996, 77:1836–1843.

    Article  PubMed  CAS  Google Scholar 

  13. Watson P, Lynch HT: Extracolonic cancer in hereditary nonpolyposis colorectal cancer. Cancer 1993, 71:677–685.

    Article  PubMed  CAS  Google Scholar 

  14. Knudson AG, Strong LC: Mutation and cancer: a model for Wilm’s tumor of the kidney. J Natl Cancer Inst 1972, 48:313–324.

    PubMed  Google Scholar 

  15. Kunkel TA, Erie DA: DNA mismatch repair. Annu Rev Biochem 2005, 74:681–710.

    Article  PubMed  CAS  Google Scholar 

  16. Boland CR, Thibodeau SN, Hamilton SR, et al.: A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998, 58:5248–5257.

    PubMed  CAS  Google Scholar 

  17. Vasen HF, Mecklin JP, Khan PM, Lynch HT: The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum 1991, 34:424–425.

    Article  PubMed  CAS  Google Scholar 

  18. Lindor NM, Rabe K, Petersen GM, et al.: Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency. JAMA 2005, 293:1979–1985.

    Article  PubMed  CAS  Google Scholar 

  19. Lipkin SM, Rozek LS, Rennert G, et al.: The MLH1 D132H variant is associated with susceptibility to sporadic colorectal cancer. Nat Genet 2004, 36:694–699.

    Article  PubMed  CAS  Google Scholar 

  20. Gallinger S, Aronson M, Shayan K, et al.: Gastrointestinal cancers and neurofibromatosis type 1 features in children with a germline homozygous MLH1 mutation. Gastroenterology 2004, 126, 576–585.

    Article  PubMed  CAS  Google Scholar 

  21. Raevaara TE, Korhonen MK, Lohi H, et al.: Functional significance and clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 2005, 129:537–549.

    PubMed  CAS  Google Scholar 

  22. Kolodner RD, Putnam CD, Myung K: Maintenance of genome stability in Saccharomyces cerevisiae. Science 2002, 297:552–557.

    Article  PubMed  CAS  Google Scholar 

  23. Hendriks YM, Wagner A, Morreau H, et al.: Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 2004, 127:17–25.

    Article  PubMed  CAS  Google Scholar 

  24. Kolodner RD, Tytell JD, Schmeits JL, et al.: Germ-line msh6 mutations in colorectal cancer families. Cancer Res 1999, 59:5068–5074.

    PubMed  CAS  Google Scholar 

  25. Wu Y, Berends MJW, Mensink RGJ, et al.: Germline hMLH3 mutations in patients with suspected HNPCC. Am J Hum Genet 2000, 67(suppl):17.

    Google Scholar 

  26. Guo HH, Loeb SA: Tumbling down a different pathway to genetic instability. J Clin Invest 2003, 112:1793–1795.

    PubMed  CAS  Google Scholar 

  27. Monckton DG, Jeffreys AJ: Minisatellite “isoallele” discrimination in pseudohomozygotes by single molecule PCR and variant repeat mapping. Genomics 1991, 11:465–467.

    Article  PubMed  CAS  Google Scholar 

  28. Yao X, Buermeyer AB, Narayanan L.: Different mutator phenotypes in Mlh1 versus Pms2 deficient mice. Proc Natl Acad Sci U S A 1999, 96:6850–6855.

    Article  PubMed  CAS  Google Scholar 

  29. Coolbaugh-Murphy M, Maleki A, Ramagli L, et al.: Estimating mutant microsatellite allele frequencies in somatic cells by small-pool PCR. Genomics 2004 84:419–430.

    Article  PubMed  CAS  Google Scholar 

  30. Parsons R, Li GM, Longley M, et al.: Mismatch repair deficiency in phenotypically normal human cells. Science 1995, 268:738–740.

    Article  PubMed  CAS  Google Scholar 

  31. Nicolaides NC, Littman SJ, Modrich P, et al.: A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype. Mol Cell Biol 1998, 18:1635–1641.

    PubMed  CAS  Google Scholar 

  32. Vilkki S, Tsao JL, Loukola A, et al.: Extensive somatic microsatellite mutations in normal human tissue. Cancer Res 2001, 61:4541–4544.

    PubMed  CAS  Google Scholar 

  33. Wang Q, Lasset C, Desseigne F, et al.: Neurofibromatosis and early onset of cancers in hMLH1-deficient children. Cancer Res 1999, 59:294–297.

    PubMed  CAS  Google Scholar 

  34. Alazzouzi H, Domingo E, Gonzalez S, et al.: Low levels of microsatellite instability characterize MLH1 and MSH2 HNPCC carriers before tumor diagnosis. Hum Mol Genet 2005, 14:235–239.

    Article  PubMed  CAS  Google Scholar 

  35. Vijg J: Somatic mutations and aging: a re-evaluation [review]. Mutat Res 2000, 447:117–135.

    PubMed  CAS  Google Scholar 

  36. Coolbaugh-Murphy M, Xu J, Ramagli LS, et al.: Microsatellite instability (MSI) increases with age in normal somatic cells. Mech Ageing Dev 2005, 126:1051–1059.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Siciliano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coolbaugh-Murphy, M., Ramagli, L.S. & Siciliano, M.J. Small-pool PCR analysis of microsatellite instability in HNPCC. Curr colorectal cancer rep 3, 185–190 (2007). https://doi.org/10.1007/s11888-007-0029-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-007-0029-z

Keywords

Navigation