Skip to main content
Log in

The adenomatous polyposis coli tumor suppressor protein and microtubule dynamics

  • Published:
Current Colorectal Cancer Reports

Abstract

Colorectal cancer is closely associated with mutation of the gene encoding the adenomatous polyposis coli (APC) tumor suppressor protein. A role has been defined for APC in the Wnt signaling pathway, in which it is responsible for mediating the degradation of the protein β-catenin. This function is clearly responsible for the tumor suppressor activity of APC. However, other APC functions have been identified, notably involving the cytoskeleton, the loss of which may be involved in shaping the phenotype or contributing to the progression of colorectal cancer. Here we provide an insight into recent developments in the study of APC interactions with cytoskeletal elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Nathke I: The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annu Rev Cell Dev Biol 2004, 20:337–366.

    Article  PubMed  Google Scholar 

  2. Behrens J: The role of the Wnt signaling pathway in colorectal tumorigenesis. Biochem Soc Trans 2005, 33:672–675.

    Article  PubMed  CAS  Google Scholar 

  3. Joslyn G, Richardson DS, White R, Alber T: Dimer formation by an N-terminal coiled coil in the APC protein. Proc Natl Acad Sci USA 1993, 90:11109–11113.

    Article  PubMed  CAS  Google Scholar 

  4. Watanabe T, Wang S, Noritake J, et al.: Interaction with IQGAP links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev Cell 2004, 7:871–883.

    Article  PubMed  CAS  Google Scholar 

  5. Kawasaki Y, Senda T, Ishidate T, et al.: Asef, a link between the tumor suppressor APC and G-protein signaling. Science 2000, 289:1194–1197.

    Article  PubMed  CAS  Google Scholar 

  6. Kawasaki Y, Sato R, Akiyama T: Mutated APC and Asef are involved in the migration of colorectal tumor cells. Nat Cell Biol 2003, 5:211–215.

    Article  PubMed  CAS  Google Scholar 

  7. Jimbo T, Kawasaki Y, Koyama R, et al.: Identification of a link between the tumor suppressor APC and the kinesin superfamily. Nat Cell Biol 2002, 4:323–327.

    Article  PubMed  CAS  Google Scholar 

  8. Seeling JM, Miller JR, Gil R, et al.: Regulation of b-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 1999, 283:2089–2091.

    Article  PubMed  CAS  Google Scholar 

  9. Munemitsu S, Souza B, Muller O, et al.: The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 1994, 54:3676–3681.

    PubMed  CAS  Google Scholar 

  10. Smith KJ, Levy DB, Maupin P, et al.: Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res 1994, 54:3672–3675.

    PubMed  CAS  Google Scholar 

  11. Zumbrunn J, Kinoshita K, Hyman AA, et al.: Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3? phosphorylation. Curr Biol 2001, 11:44–49.

    Article  PubMed  CAS  Google Scholar 

  12. Deka J, Kuhlmann J, Muller O: A domain within the tumor suppressor protein APC shows very similar biochemical properties as the microtubule-associated protein tau. Eur J Biochem 1998, 253:591–597.

    Article  PubMed  CAS  Google Scholar 

  13. Su L-K, Burrell M, Hill DE, et al.: APC binds to the novel protein EB1. Cancer Res 1995, 55:2972–2977.

    PubMed  CAS  Google Scholar 

  14. Askham JM, Moncur PM, Markham AF, et al.: Regulation and function of the interaction between the APC tumor suppressor protein and EB1. Oncogene 2000, 19:1950–1958.

    Article  PubMed  CAS  Google Scholar 

  15. Slep KC, Rogers SL, Elliott SL, et al.: Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end. J Cell Biol 2005, 168:587–598.

    Article  PubMed  CAS  Google Scholar 

  16. Honnappa S, John CM, Kostrewa D, et al.: Structural insights into the EB1-APC interaction. EMBO J 2005, 24:261–269.

    Article  PubMed  CAS  Google Scholar 

  17. Matsumine A, Ogai A, Senda T: Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science 1996, 272:1020–1023.

    Article  PubMed  CAS  Google Scholar 

  18. Bienz M, Hamada F: Adenomatous polyposis coli proteins and cell adhesion. Curr Op Cell Biol 2004, 16:528–535.

    Article  PubMed  CAS  Google Scholar 

  19. Näthke IS, Adams CL, Polakis P, et al.: The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 1996, 134:165–179.

    Article  PubMed  Google Scholar 

  20. Mimori-Kiyosue Y, Shiina N, Tsukita S: APC protein moves along microtubules and concentrates at their growing ends in epithelial cells. J Cell Biol 2000, 148:505–517.

    Article  PubMed  CAS  Google Scholar 

  21. Langford KJ, Askham JM, Lee T, et al.: Examination of actin and microtubule dependent APC localisations in living mammalian cells. BMC Cell Biol 2006, 7:3.

    Article  PubMed  Google Scholar 

  22. Rosin-Arbesfeld R, Ihrke G, Bienz M: Actin-dependent membrane association of the APC tumor suppressor in polarized mammalian epithelial cells. EMBO J 2001, 20:5929–5939.

    Article  PubMed  CAS  Google Scholar 

  23. Langford KJ, Lee T, Askham JM, et al.: Adenomatous polyposis coli localization is both cell type and cell context dependent. Cell Motil Cytoskel 2006, 63:483–492.

    Article  CAS  Google Scholar 

  24. Sharma M, Leung L, Brocardo M: Membrane localization of adenomatous polyposis coli protein at cellular protrusions. J Bio Chem 2006, 281:17140–17149.

    Article  CAS  Google Scholar 

  25. Morrison EE, Askham J, Clissold P, et al.: Expression of β-catenin and the adenomatous polyposis coli tumor suppressor protein in mouse neocortical cells in vitro. Neurosci Lett 1997, 235:129–132.

    Article  PubMed  CAS  Google Scholar 

  26. Sansom OJ, Reed KR, Hayes AJ, et al.: Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 2004, 18:1385–1390.

    Article  PubMed  CAS  Google Scholar 

  27. Lansbergen G, Akhmanova A: Microtubule plus end: a hub of cellular activities. Traffic 2006, 7:499–507.

    Article  PubMed  CAS  Google Scholar 

  28. Wen Y, Eng CH, Schmoranzer J, et al.: EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 2004, 6:820–830.

    Article  PubMed  CAS  Google Scholar 

  29. Etienne-Manneville S, Hall, A: Cdc42 regulates GSK-3b and adenomatous polyposis coli to control cell polarity. Nature 2003, 421:753–756.

    Article  PubMed  CAS  Google Scholar 

  30. Etienne-Manneville S, Manneville JB, Nicholls S, et al.: Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol 2005, 170:895–901.

    Article  PubMed  CAS  Google Scholar 

  31. Nakamura M, Zhou XZ, Lu KP: Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr Biol 2001, 11:1062–1067.

    Article  PubMed  CAS  Google Scholar 

  32. Askham JM, Vaughan KT, Goodson HV, et al.: Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol Biol Cell 2002, 13:3627–3645.

    Article  PubMed  CAS  Google Scholar 

  33. Hayashi I, Wilde A, Mal TK, et al.: Structural basis for the activation of microtubule assembly by the EB1 and p150(Glued) complex. Mol Cell 2005, 19:449–460.

    Article  PubMed  CAS  Google Scholar 

  34. Kita K, Wittman T, Nathke IS, et al.: Adenomatous polyposis coli on microtubule plus ends in cell extensions can promote microtubule net growth with or without EB1. Mol Biol Cell 2006, 17:2331–2345.

    Article  PubMed  CAS  Google Scholar 

  35. Kinzler KW, Vogelstein B: Lessons from hereditary colorectal cancer. Cell 1996, 87:159–170.

    Article  PubMed  CAS  Google Scholar 

  36. Rajagopalan H, Lengauer C: Aneuploidy and cancer. Nature 2004, 432:338–341.

    Article  PubMed  CAS  Google Scholar 

  37. Fodde R, Kuipers J, Rosenberg C, et al.: Mutations in the APC tumor suppressor gene cause chromosomal instability. Nat Cell Biol 2001, 3:433–438.

    Article  PubMed  CAS  Google Scholar 

  38. Kaplan KB, Burds AA, Swedlow J, et al.: A role for the adenomatous polyposis coli protein in chromosome segregation. Nat Cell Biol 2001, 3:429–432.

    Article  PubMed  CAS  Google Scholar 

  39. Fodde R, Smits R, Clevers H: APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001, 1:55–67.

    Article  PubMed  CAS  Google Scholar 

  40. Green RA, Kaplan KB: Chromosomal instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J Cell Biol 2003, 163:949–961.

    Article  PubMed  CAS  Google Scholar 

  41. Green RA, Wollman R, Kaplan KB: APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell 2005, 16:4609–4622.

    Article  PubMed  CAS  Google Scholar 

  42. Draviam VM, Shapiro I, Aldridge B, et al.: Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1-or APC-depleted cells. EMBO J 2006, 25:2814–2827.

    Article  PubMed  CAS  Google Scholar 

  43. Penman GA, Leung L, Nathke IS: The adenomatous polyposis coli protein (APC) exists in two distinct soluble complexes with different functions. J Cell Sci 2005, 118:4751–4750.

    Article  Google Scholar 

  44. Wang Y, Zhou X, Zhu H, et al.: Overexpression of EB1 in human esophageal squamous cell carcinoma (ESCC) may promote cellular growth by activating β-catenin/TCF pathway. Oncogene 2005, 24:6637–6645.

    Article  PubMed  CAS  Google Scholar 

  45. Li Z, Nathke IS: Tumor-associated NH2-terminal fragments are the most stable part of the adenomatous polyposis coli protein and can be regulated by interactions with COOH-terminal domains. Cancer Res 2005, 65:5195–5204.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewan E. Morrison PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüning-Richardson, A., Morrison, E.E. The adenomatous polyposis coli tumor suppressor protein and microtubule dynamics. Curr colorectal cancer rep 3, 82–86 (2007). https://doi.org/10.1007/s11888-007-0005-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-007-0005-7

Keywords

Navigation