Skip to main content

Advertisement

Log in

Modifiers of risk in familial adenomatous polyposis

  • Published:
Current Colorectal Cancer Reports

Abstract

Familial adenomatous polyposis (FAP) is an autosomal dominant condition caused by mutations in the adenomatous polyposis coli (APC) gene. The phenotypic expression of FAP is extremely variable, and only part of this variability reflects the influence of different germline APC mutations. The remaining differences are likely attributable to the action of modifier genes and environmental (including pharmacologic) factors. In this review, we discuss recent investigations of candidate modifiers of FAP risk, including studies examining the roles of the MutY homolog, insulin-like growth factor-2, EphB receptors, detoxification enzymes, cyclooxygenase-2, and lipoprotein lipase. Identification of FAP modifier genes will provide new insight into the mechanisms of colorectal cancer development and may suggest novel therapeutic targets as well as candidate genes for colorectal cancer susceptibility in the general population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. de la Chapelle A: Genetic predisposition to colorectal cancer. Nat Rev Cancer 2004, 4:769–780.

    Article  PubMed  CAS  Google Scholar 

  2. Soravia C, Berk T, Madlensky L, et al.: Genotype-phenotype correlations in attenuated adenomatous polyposis coli. Am J Hum Genet 1998, 62:1290–1301.

    Article  PubMed  CAS  Google Scholar 

  3. Giardiello FM, Krush AJ, Petersen GM, et al.: Phenotypic variability of familial adenomatous polyposis in 11 unrelated families with identical APC gene mutation. Gastroenterology 1994,106:1542–1547.

    PubMed  CAS  Google Scholar 

  4. Crabtree MD, Tomlinson IP, Talbot IC, Phillips RK: Variability in the severity of colonic disease in familial adenomatous polyposis results from differences in tumor initiation rather than progression and depends relatively little on patient age. Gut 2001, 49:540–543.

    Article  PubMed  CAS  Google Scholar 

  5. Crabtree MD, Tomlinson IP, Hodgson SV, et al.: Explaining variation in familial adenomatous polyposis: relationship between genotype and phenotype and evidence for modifier genes. Gut 2002, 51:420–423.

    Article  PubMed  CAS  Google Scholar 

  6. Sturt NJ, Gallagher MC, Bassett P, et al.: Evidence for genetic predisposition to desmoid tumours in familial adenomatous polyposis independent of the germline APC mutation. Gut 2004, 53:1832–1836.

    Article  PubMed  CAS  Google Scholar 

  7. Dietrich WF, Lander ES, Smith JS, et al.: Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 1993, 75:631–639.

    Article  PubMed  CAS  Google Scholar 

  8. MacPhee M, Chepenik KP, Liddell RA, et al.: The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell 1995, 81:957–966.

    Article  PubMed  CAS  Google Scholar 

  9. Cormier RT, Hong KH, Halberg RB, et al.: Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet 1997, 17:88–91.

    Article  PubMed  CAS  Google Scholar 

  10. Tomlinson IP, Neale K, Talbot IC, et al.: A modifying locus for familial adenomatous polyposis may be present on chromosome 1p35-p36. J Med Genet 1996, 33:268–273.

    Article  PubMed  CAS  Google Scholar 

  11. Dobbie Z, Heinimann K, Bishop DT, et al.: Identification of a modifier gene locus on chromosome 1p35-36 in familial adenomatous polyposis. Hum Genet 1997, 99:653–657.

    Article  PubMed  CAS  Google Scholar 

  12. Riggins GJ, Markowitz S, Wilson JK, et al.: Absence of secretory phospholipase A2 gene alterations in human colorectal cancer. Cancer Res 1995, 55:5184–5186.

    PubMed  CAS  Google Scholar 

  13. Tomlinson IP, Beck NE, Neale K, Bodmer WF: Variants at the secretory phospholipase A2 (PLA2G2A) locus: analysis of associations with familial adenomatous polyposis and sporadic colorectal tumours. Ann Hum Genet 1996, 60:369–376.

    PubMed  CAS  Google Scholar 

  14. Dobbie Z, Muller H, Scott RJ: Secretory phospholipase A2 does not appear to be associated with phenotypic variation in familial adenomatous polyposis. Hum Genet 1996, 98:386–390.

    Article  PubMed  CAS  Google Scholar 

  15. Nimmrich I, Friedl W, Kruse R, et al.: Loss of the PLA2G2A gene in a sporadic colorectal tumor of a patient with a PLA2G2A germline mutation and absence of PLA2G2A germline alterations in patients with FAP. Hum Genet 1997, 100:345–349.

    Article  PubMed  CAS  Google Scholar 

  16. Al-Tassan N, Chmiel NH, Maynard J, et al.: Inherited vari- ants of MYH associated with somatic G:C⊠T:A mutations in colorectal tumors. Nat Genet 2002, 30:227–232.

    Article  PubMed  CAS  Google Scholar 

  17. Sieber OM, Howarth KM, Thirlwell C, et al.: Myh deficiency enhances intestinal tumorigenesis in multiple intestinal neoplasia (ApcMin/+) mice. Cancer Res 2004, 64:8876–8881.

    Article  PubMed  CAS  Google Scholar 

  18. Sieber OM, Lipton L, Crabtree M, et al.: Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med 2003, 348:791–799.

    Article  PubMed  Google Scholar 

  19. Houlston R, Crabtree M, Phillips R, et al.: Explaining differ- ences in the severity of familial adenomatous polyposis and the search for modifier genes. Gut 2001, 48:1–5.

    Article  PubMed  CAS  Google Scholar 

  20. Croitoru ME, Cleary SP, Di Nicola N, et al.: Association between biallelic and monoallelic germline MYH gene mutations and colorectal cancer risk. J Natl Cancer Inst 2004, 96:1631–1634. A population-based study evaluating MYH gene mutations and CRC risk.

    Article  PubMed  CAS  Google Scholar 

  21. Plasilova M, Russell AM, Wanner A, et al.: Exclusion of an extracolonic disease modifier locus on chromosome 1p33-36 in a large Swiss familial adenomatous polyposis kindred. Eur JHum Genet 2004, 12:365–371.

    Article  CAS  Google Scholar 

  22. Kairupan CF, Meldrum CJ, Crooks R, et al.: Mutation analysis of the MYH gene in an Australian series of colorectal polyposis patients with or without germline APC mutations. Int J Cancer 2005,116:73–77.

    Article  PubMed  CAS  Google Scholar 

  23. Feinberg AP: The epigenetics of cancer etiology. Semin Cancer Biol 2004, 14:427–432.

    Article  PubMed  CAS  Google Scholar 

  24. Cui H, Horon IL, Ohlsson R, et al.: Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat Med 1998, 4:1276–1280.

    Article  PubMed  CAS  Google Scholar 

  25. Hassan AB, Howell JA: Insulin-like growth factor II supply modifies growth of intestinal adenoma in Apc(Min/+) mice. Cancer Res 2000, 60:1070–1076.

    PubMed  CAS  Google Scholar 

  26. Sakatani T, Kaneda A, Iacobuzio-Donahue CA, et al.: Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 2005, 307:1976–1978. Mice were genetically modified to mimic loss of imprinting, and subsequent overexpression, of Igf2 on the Apc (Min) mouse background. Overexpression led to an increase in polyps in both the large and small bowel.

    Article  PubMed  CAS  Google Scholar 

  27. Harper J, Burns JL, Foulstone EJ, et al.: Soluble IGF2 receptor rescues Apc(Min/+) intestinal adenoma progression induced by Igf2 loss of imprinting. Cancer Res 2006, 66:1940–1948.

    Article  PubMed  CAS  Google Scholar 

  28. Batlle E, Henderson JT, Beghtel H, et al.: Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002, 111:251–263.

    Article  PubMed  CAS  Google Scholar 

  29. Batlle E, Bacani J, Begthel H, et al.: EphB receptor activity suppresses colorectal cancer progression. Nature 2005, 435:1126–1130. A novel study demonstrating that suppression of EphB receptor expression is a critical step in CRC progression.

    Article  PubMed  CAS  Google Scholar 

  30. Jubb AM, Zhong F, Bheddah S, et al.: EphB2 is a prognostic factor in colorectal cancer. Clin Cancer Res 2005, 11:5181–5187.

    Article  PubMed  CAS  Google Scholar 

  31. Grubben MJ, Nagengast FM, Katan MB, Peters WH: The glutathione biotransformation system and colorectal cancer risk in humans. Scand J Gastroenterol Suppl 2001,234:68–76.

    Article  PubMed  Google Scholar 

  32. Spigelman AD, Nugent KP, Penna C, et al.: Glutathione S-transferase Mu phenotype in patients with familial adenomatous polyposis and in unaffected controls. Cancer Detect Prev 1994, 18:253–258.

    PubMed  CAS  Google Scholar 

  33. Grubben MJ, van den Braak CC, Nagengast FM, Peters WH: Low colonic glutathione detoxification capacity in patients at risk for colon cancer. Eur J Clin Invest 2006, 36:188–192.

    Article  PubMed  CAS  Google Scholar 

  34. Lamberti C, Jungck M, Laarmann M, et al.: Arylamine N-acetyltransferase type 2 and glutathione S-transferases M1 and T1 polymorphisms in familial adenomatous polyposis. Pharmacogenetics 2002, 12:49–54.

    Article  PubMed  CAS  Google Scholar 

  35. Crabtree MD, Fletcher C, Churchman M, et al.: Analysis of candidate modifier loci for the severity of colonic familial adenomatous polyposis, with evidence for the importance of the N-acetyl transferases. Gut 2004, 53:271–276.

    Article  PubMed  CAS  Google Scholar 

  36. Berkhout M, Roelofs HM, Friederich P, et al.: Detoxification enzymes in the duodenal mucosa of patients with familial adenomatous polyposis. Br J Surg 2005, 92:754–755.

    Article  PubMed  CAS  Google Scholar 

  37. Moisio AL, Sistonen P, Mecklin JP, et al.: Genetic polymorphisms in carcinogen metabolism and their association to hereditary nonpolyposis colon cancer. Gastroenterology 1998, 115:1387–1394.

    Article  PubMed  CAS  Google Scholar 

  38. Hein DW: Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res 2002, 506–507:65–77.

    PubMed  Google Scholar 

  39. Scott RJ, Taeschner W, Heinimann K, et al.: Association of extracolonic manifestations of familial adenomatous polyposis with acetylation phenotype in a large FAP kindred. Eur J Hum Genet 1997, 5:43–49.

    PubMed  CAS  Google Scholar 

  40. Hisamuddin IM, Wehbi MA, Chao A, et al.: Genetic polymorphisms of human flavin monooxygenase 3 in sulindacmediated primary chemoprevention of familial adenomatous polyposis. Clin Cancer Res 2004,10:8357–8362.

    Article  PubMed  CAS  Google Scholar 

  41. Hisamuddin IM, Wehbi MA, Schmotzer B, et al.: Genetic polymorphisms of flavin monooxygenase 3 in sulindacinduced regression of colorectal adenomas in familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev 2005,14:2366–2369.

    Article  PubMed  CAS  Google Scholar 

  42. Eberhart CE, Coffey RJ, Radhika A, et al.: Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994, 107:1183–1188.

    PubMed  CAS  Google Scholar 

  43. Brosens LA, Iacobuzio-Donahue CA, Keller JJ, et al.: Increased cyclooxygenase-2 expression in duodenal compared with colonic tissues in familial adenomatous polyposis and relationship to the -765G C COX-2 polymorphism. Clin Cancer Res 2005,11:4090–4096.

    Article  PubMed  CAS  Google Scholar 

  44. Oshima M, Dinchuk JE, Kargman SL, et al.: Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996, 87:803–809.

    Article  PubMed  CAS  Google Scholar 

  45. Steinbach G, Lynch PM, Phillips RK, et al.: The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 2000, 342:1946–1952.

    Article  PubMed  CAS  Google Scholar 

  46. Phillips RK, Wallace MH, Lynch PM, et al.: FAP Study Group: A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 2002, 50:857–860.

    Article  PubMed  CAS  Google Scholar 

  47. Bresalier RS, Sandler RS, Quan H, et al.: Adenomatous Polyp Prevention on Vioxx (APPROVe) Trial Investigators: cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med. 2005 Mar 17; 352(11):1092–102.

    Article  PubMed  CAS  Google Scholar 

  48. Solomon SD, McMurray JJ, Pfeffer MA, et al.: Adenoma Prevention with Celecoxib (APC) Study Investigators. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 2005,352:1071–1080.

    Article  PubMed  CAS  Google Scholar 

  49. Mutoh M, Niho N, Wakabayashi K: Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice. Biol Chem 2006,387:381–385.

    Article  PubMed  CAS  Google Scholar 

  50. Mutoh M, Akasu T, Takahashi M, et al.: Possible involvement of hyperlipidemia in increasing risk of colorectal tumor development in human familial adenomatous polyposis. Jpn J Clin Oncol 2006, 36:166–171.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Gallinger MD, MSc, FRCS(C).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zogopoulos, G., Gallinger, S. Modifiers of risk in familial adenomatous polyposis. Curr colorectal cancer rep 2, 185–190 (2006). https://doi.org/10.1007/s11888-006-0021-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-006-0021-z

Keywords

Navigation