Skip to main content

Advertisement

Log in

Polyvascular Disease: A Narrative Review of Risk Factors, Clinical Outcomes and Treatment

  • Ischemic Heart Disease (D Mukherjee, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Polyvascular disease has a significant global burden and is associated with increased risk of major adverse cardiac events with each additional vascular territory involved. The purpose of this review is to highlight the risk factors, associated outcomes, emerging genetic markers, and evidence for screening and treatment of polyvascular disease.

Recent Findings

Polyvascular disease is the presence of atherosclerosis in two or more vascular beds. It has a significant global burden, with a prevalence of 30–70% in patients with known atherosclerosis. Patients with polyvascular disease experience elevated rates of cardiovascular death, myocardial infarction and stroke, especially among high-risk subgroups like those with type 2 diabetes mellitus and there is a step-wise increased risk of adverse outcomes with each additional vascular territory involved. Genetic analyses demonstrate that some individuals may carry a genetic predisposition, while others exhibit higher levels of atherogenic lipoproteins and inflammatory markers. Routine screening for asymptomatic disease is not currently recommended by major cardiovascular societies unless patients are high-risk. While there are no established protocols for escalating treatment, existing guidelines advocate for lipid-lowering therapy. Additionally, recent studies have demonstrated benefit from antithrombotic agents, such as P2Y12 inhibitors and low-dose anticoagulation, but the optimal timing and dosage of these agents has not been established, and the ischemic benefit must be balanced against the increased risk of bleeding in the polyvascular population.

Summary

Due to the high prevalence and risks associated with polyvascular disease, early identification and treatment intensification are crucial to reduce disease progression. Future research is needed to develop screening protocols and determine the optimal timing and dosing of therapy to prevent ischemic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Aday AW, Matsushita K. Epidemiology of Peripheral Artery Disease and Polyvascular Disease. Circ Res. 2021;128:1818–32. https://doi.org/10.1161/CIRCRESAHA.121.318535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fowkes FGR, Low L-P, Tuta S, Kozak J. Ankle-brachial index and extent of atherothrombosis in 8891 patients with or at risk of vascular disease: results of the international AGATHA study. Eur Heart J. 2006;27:1861–7.

    Article  PubMed  Google Scholar 

  3. Gutierrez JA, Aday AW, Patel MR, Jones WS. Polyvascular Disease: Reappraisal of the Current Clinical Landscape. Circ Cardiovasc Interv. 2019;12:e007385. https://doi.org/10.1161/CIRCINTERVENTIONS.119.007385.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eikelboom JW, et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N Engl J Med. 2017;377:1319–30. https://doi.org/10.1056/NEJMoa1709118.

    Article  CAS  PubMed  Google Scholar 

  5. Weissler EH, et al. Polyvascular disease: A narrative review of current evidence and a consideration of the role of antithrombotic therapy. Atherosclerosis. 2020;315:10–7. https://doi.org/10.1016/j.atherosclerosis.2020.11.001.

    Article  CAS  PubMed  Google Scholar 

  6. Steg PG, et al. One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA. 2007;297:1197–206. https://doi.org/10.1001/jama.297.11.1197.

    Article  CAS  PubMed  Google Scholar 

  7. Hirsch AT, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286:1317–24. https://doi.org/10.1001/jama.286.11.1317.

    Article  CAS  PubMed  Google Scholar 

  8. Bhatt DL, et al. Prior polyvascular disease: risk factor for adverse ischaemic outcomes in acute coronary syndromes. Eur Heart J. 2009;30:1195–202. https://doi.org/10.1093/eurheartj/ehp099.

    Article  PubMed  Google Scholar 

  9. Collet J-P, et al. Systematic detection of polyvascular disease combined with aggressive secondary prevention in patients presenting with severe coronary artery disease: The randomized AMERICA Study. Int J Cardiol. 2018;254:36–42. https://doi.org/10.1016/j.ijcard.2017.11.081.

    Article  PubMed  Google Scholar 

  10. Gutierrez JA, et al. Polyvascular Disease and Risk of Major Adverse Cardiovascular Events in Peripheral Artery Disease: A Secondary Analysis of the EUCLID Trial. JAMA Netw Open. 2018;1:e185239. https://doi.org/10.1001/jamanetworkopen.2018.5239.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hiatt WR, et al. Ticagrelor versus Clopidogrel in Symptomatic Peripheral Artery Disease. N Engl J Med. 2017;376:32–40. https://doi.org/10.1056/NEJMoa1611688.

    Article  CAS  PubMed  Google Scholar 

  12. Vidakovic R, et al. The prevalence of polyvascular disease in patients referred for peripheral arterial disease. Eur J Vasc Endovasc Surg. 2009;38:435–40. https://doi.org/10.1016/j.ejvs.2009.05.006.

    Article  CAS  PubMed  Google Scholar 

  13. Libby P, Ridker PM. Inflammation and Atherothrombosis. J Am Coll Cardiol. 2006;48:A33–46. https://doi.org/10.1016/j.jacc.2006.08.011.

    Article  CAS  Google Scholar 

  14. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24:12–22. https://doi.org/10.1161/01.ATV.0000105054.43931.f0.

    Article  CAS  PubMed  Google Scholar 

  15. Dikilitas O, Satterfield BA, Kullo IJ. Risk Factors for Polyvascular Involvement in Patients With Peripheral Artery Disease: A Mendelian Randomization Study. J Am Heart Assoc. 2020;9:e017740. https://doi.org/10.1161/JAHA.120.017740.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tian Y, et al. Association of Polyvascular Disease and Elevated Interleukin-6 With Outcomes in Acute Ischemic Stroke or Transient Ischemic Attack. Front Neurol. 2021;12. https://doi.org/10.3389/fneur.2021.661779.

  17. Elias-Smale SE, Kardys I, Oudkerk M, Hofman A, Witteman JC. C-reactive protein is related to extent and progression of coronary and extra-coronary atherosclerosis; results from the Rotterdam study. Atherosclerosis. 2007;195:e195-202. https://doi.org/10.1016/j.atherosclerosis.2007.07.006.

    Article  CAS  PubMed  Google Scholar 

  18. Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev. 2014;22:147–51. https://doi.org/10.1097/crd.0000000000000021.

    Article  PubMed  Google Scholar 

  19. Ding N, et al. Cigarette Smoking, Smoking Cessation, and Long-Term Risk of 3 Major Atherosclerotic Diseases. J Am Coll Cardiol. 2019;74:498–507. https://doi.org/10.1016/j.jacc.2019.05.049.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mora S, et al. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation. 2009;119:931–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pradhan AD, et al. Symptomatic peripheral arterial disease in women: nontraditional biomarkers of elevated risk. Circulation. 2008;117:823–31.

    Article  PubMed  Google Scholar 

  22. Murabito JM, et al. Association between chromosome 9p21 variants and the ankle-brachial index identified by a meta-analysis of 21 genome-wide association studies. Circ Cardiovasc Genet. 2012;5:100–12. https://doi.org/10.1161/CIRCGENETICS.111.961292.

    Article  CAS  PubMed  Google Scholar 

  23. • Klarin D, et al. Genome-wide association study of peripheral artery disease in the Million Veteran Program. Nat Med. 2019;25:1274–9. https://doi.org/10.1038/s41591-019-0492-5. Findings from this genome-wide association study of over 32 million DNA sequence variants in patients with peripheral artery disease found 19 loci associated with peripiheral artery disease and 11 loci associated with disease in coronary, cerebral, and peripheral vascular territories.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Linsel-Nitschke P, et al. Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease–a Mendelian Randomisation study. PLoS ONE. 2008;3:e2986. https://doi.org/10.1371/journal.pone.0002986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mukherjee D, Eagle K. The importance of early diagnosis and treatment in peripheral arterial disease: insights from the PARTNERS and REACH registries. Curr Vasc Pharmacol. 2010;8:293–300. https://doi.org/10.2174/157016110791112304.

    Article  CAS  PubMed  Google Scholar 

  26. Mukherjee D, et al. Impact of prior peripheral arterial disease and stroke on outcomes of acute coronary syndromes and effect of evidence-based therapies (from the Global Registry of Acute Coronary Events). Am J Cardiol. 2007;100:1–6. https://doi.org/10.1016/j.amjcard.2007.02.046.

    Article  PubMed  Google Scholar 

  27. Alberts MJ, et al. Three-year follow-up and event rates in the international REduction of Atherothrombosis for Continued Health Registry. Eur Heart J. 2009;30:2318–26. https://doi.org/10.1093/eurheartj/ehp355.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang Q, et al. Asymptomatic polyvascular disease and the risks of cardiovascular events and all-cause death. Atherosclerosis. 2017;262:1–7. https://doi.org/10.1016/j.atherosclerosis.2017.04.015.

    Article  CAS  PubMed  Google Scholar 

  29. Bonaca MP, et al. Peripheral Revascularization in Patients With Peripheral Artery Disease With Vorapaxar: Insights From the TRA 2 degrees P-TIMI 50 Trial. JACC Cardiovasc Interv. 2016;9:2157–64. https://doi.org/10.1016/j.jcin.2016.07.034.

    Article  PubMed  Google Scholar 

  30. Bonaca MP, et al. Low-Density Lipoprotein Cholesterol Lowering With Evolocumab and Outcomes in Patients With Peripheral Artery Disease: Insights From the FOURIER Trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation. 2018;137:338–50. https://doi.org/10.1161/CIRCULATIONAHA.117.032235.

    Article  CAS  PubMed  Google Scholar 

  31. Bonaca M, et al. Vorapaxar Reduces Peripheral Revascularization Regardless of the number of diseased territories: insights from the Tra2p–Timi 50 trial. J Am Coll Cardiol. 2013;61:E2018–E2018. https://doi.org/10.1016/S0735-1097(13)62018-5.

    Article  Google Scholar 

  32. Subherwal S, et al. Polyvascular disease and long-term cardiovascular outcomes in older patients with non-ST-segment-elevation myocardial infarction. Circ Cardiovasc Qual Outcomes. 2012;5:541–9. https://doi.org/10.1161/circoutcomes.111.964379.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gutierrez JA, et al. Prevalence and Outcomes of Polyvascular (Coronary, Peripheral, or Cerebrovascular) Disease in Patients With Diabetes Mellitus (From the SAVOR-TIMI 53 Trial). Am J Cardiol. 2019;123:145–52. https://doi.org/10.1016/j.amjcard.2018.09.014.

    Article  PubMed  Google Scholar 

  34. Verma S, et al. Effect of Liraglutide on Cardiovascular Events in Patients With Type 2 Diabetes Mellitus and Polyvascular Disease: Results of the LEADER Trial. Circulation. 2018;137:2179–83. https://doi.org/10.1161/CIRCULATIONAHA.118.033898.

    Article  CAS  PubMed  Google Scholar 

  35. Bonaca MP, et al. Polyvascular disease, type 2 diabetes, and long-term vascular risk: a secondary analysis of the IMPROVE-IT trial. Lancet Diabetes Endocrinol. 2018;6:934–43. https://doi.org/10.1016/s2213-8587(18)30290-0.

    Article  PubMed  Google Scholar 

  36. Creager MA, Lüscher TF, prepare with the assistance of, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation. 2003;108:1527–1532.

  37. Luscher TF, Creager MA, Beckman JA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part II. Circulation. 2003;108:1655–61.

    Article  PubMed  Google Scholar 

  38. Samsky MD, et al. Polyvascular disease and increased risk of cardiovascular events in patients with type 2 diabetes: Insights from the EXSCEL trial. Atherosclerosis. 2021;338:1–6. https://doi.org/10.1016/j.atherosclerosis.2021.10.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fujisue K, et al. Prognostic significance of polyvascular disease in heart failure with preserved left ventricular ejection fraction. Medicine (Baltimore). 2019;98:e15959. https://doi.org/10.1097/md.0000000000015959.

    Article  PubMed  Google Scholar 

  40. Jang WJ, et al. Association between polyvascular disease and clinical outcomes in patients with cardiogenic shock: Results from the RESCUE registry. Int J Cardiol. 2021;339:70–4. https://doi.org/10.1016/j.ijcard.2021.07.008.

    Article  PubMed  Google Scholar 

  41. Gerhard-Herman MD, et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135:e726–79. https://doi.org/10.1161/CIR.0000000000000471.

    Article  PubMed  Google Scholar 

  42. Aboyans V, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018;39:763–816. https://doi.org/10.1093/eurheartj/ehx095.

    Article  PubMed  Google Scholar 

  43. Virani SS, et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2023;148:e9–119. https://doi.org/10.1161/cir.0000000000001168.

    Article  PubMed  Google Scholar 

  44. Committee CS. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee Lancet. 1996;348:1329–39. https://doi.org/10.1016/s0140-6736(96)09457-3.

    Article  Google Scholar 

  45. Bonaca MP, et al. Ticagrelor for Prevention of Ischemic Events After Myocardial Infarction in Patients With Peripheral Artery Disease. J Am Coll Cardiol. 2016;67:2719–28. https://doi.org/10.1016/j.jacc.2016.03.524.

    Article  CAS  PubMed  Google Scholar 

  46. Tricoci P, et al. Thrombin-Receptor Antagonist Vorapaxar in Acute Coronary Syndromes. N Engl J Med. 2011;366:20–33. https://doi.org/10.1056/NEJMoa1109719.

    Article  CAS  PubMed  Google Scholar 

  47. Morrow DA, et al. Efficacy and safety of vorapaxar in patients with prior ischemic stroke. Stroke. 2013;44:691–8. https://doi.org/10.1161/strokeaha.111.000433.

    Article  CAS  PubMed  Google Scholar 

  48. Capodanno D, et al. Dual-pathway inhibition for secondary and tertiary antithrombotic prevention in cardiovascular disease. Nat Rev Cardiol. 2020;17:242–57. https://doi.org/10.1038/s41569-019-0314-y.

    Article  CAS  PubMed  Google Scholar 

  49. Eikelboom JW, et al. Mortality Benefit of Rivaroxaban Plus Aspirin in Patients With Chronic Coronary or Peripheral Artery Disease. J Am Coll Cardiol. 2021;78:14–23. https://doi.org/10.1016/j.jacc.2021.04.083.

    Article  CAS  PubMed  Google Scholar 

  50. Anand SS, et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. The Lancet. 2018;391:219–29. https://doi.org/10.1016/s0140-6736(17)32409-1.

    Article  CAS  Google Scholar 

  51. Kaplovitch E, et al. Rivaroxaban and Aspirin in Patients With Symptomatic Lower Extremity Peripheral Artery Disease: A Subanalysis of the COMPASS Randomized Clinical Trial. JAMA Cardiology. 2021;6:21–9. https://doi.org/10.1001/jamacardio.2020.4390.

    Article  PubMed  Google Scholar 

  52. Bonaca MP, et al. Rivaroxaban in Peripheral Artery Disease after Revascularization. N Engl J Med. 2020;382:1994–2004. https://doi.org/10.1056/NEJMoa2000052.

    Article  CAS  PubMed  Google Scholar 

  53. Stoekenbroek RM, et al. High-dose atorvastatin is superior to moderate-dose simvastatin in preventing peripheral arterial disease. Heart. 2015;101:356–62. https://doi.org/10.1136/heartjnl-2014-306906.

    Article  CAS  PubMed  Google Scholar 

  54. Mach F, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88. https://doi.org/10.1093/eurheartj/ehz455.

    Article  PubMed  Google Scholar 

  55. Grundy SM, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082–143. https://doi.org/10.1161/CIR.0000000000000625.

    Article  PubMed  Google Scholar 

  56. Kleindorfer DO, et al. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke. 2021;52:e364–467. https://doi.org/10.1161/str.0000000000000375.

    Article  PubMed  Google Scholar 

  57. Lloyd-Jones DM, et al. 2022 ACC Expert Consensus Decision Pathway on the Role of Nonstatin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2022;80:1366–418. https://doi.org/10.1016/j.jacc.2022.07.006.

    Article  PubMed  Google Scholar 

  58. • Jukema JW, et al. Alirocumab in Patients With Polyvascular Disease and Recent Acute Coronary Syndrome: ODYSSEY OUTCOMES Trial. J Am Coll Cardiol. 2019;74:1167–76. https://doi.org/10.1016/j.jacc.2019.03.013. This trial demonstrated that treatment with the PCSK9 inhibitor alirocumb led to a reduction in major adverse cardiac events (comprising of cardiovascular death, myocardial infarction, ischemic stroke, and unstable angina requiring hospitalization) with greater absolute risk reductions observed with each additional vascular territory involved.

    Article  CAS  PubMed  Google Scholar 

  59. Hibi K, et al. Clinically evident polyvascular disease and regression of coronary atherosclerosis after intensive statin therapy in patients with acute coronary syndrome: serial intravascular ultrasound from the Japanese assessment of pitavastatin and atorvastatin in acute coronary syndrome (JAPAN-ACS) trial. Atherosclerosis. 2011;219:743–9. https://doi.org/10.1016/j.atherosclerosis.2011.08.024.

    Article  CAS  PubMed  Google Scholar 

  60. Sabatine MS, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017;376:1713–22. https://doi.org/10.1056/NEJMoa1615664.

    Article  CAS  PubMed  Google Scholar 

  61. Alkhalil M, Kuzemczak M, Whitehead N, Kavvouras C, Džavík V. Meta-Analysis of Intensive Lipid-Lowering Therapy in Patients With Polyvascular Disease. J Am Heart Assoc. 2021;10:e017948. https://doi.org/10.1161/jaha.120.017948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wiviott S, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380. https://doi.org/10.1056/NEJMoa1812389.

  63. Hernandez AF, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392:1519–29. https://doi.org/10.1016/s0140-6736(18)32261-x.

    Article  CAS  PubMed  Google Scholar 

  64. Rakipovski G, et al. The GLP-1 Analogs Liraglutide and Semaglutide Reduce Atherosclerosis in ApoE(-/-) and LDLr(-/-) Mice by a Mechanism That Includes Inflammatory Pathways. JACC Basic Transl Sci. 2018;3:844–57. https://doi.org/10.1016/j.jacbts.2018.09.004.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ridker PM, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377:1119–31. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  PubMed  Google Scholar 

  66. US National Library of Medicine. ClinicalTrials.gov. 2023. https://clinicaltrials.gov/study/NCT05021835.

  67. Nikpay M, et al. A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30. https://doi.org/10.1038/ng.3396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sibon I, et al. COL4A1 mutation in Axenfeld-Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol. 2007;62:177–84. https://doi.org/10.1002/ana.21191.

    Article  PubMed  Google Scholar 

  69. Malik R, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50:524–37. https://doi.org/10.1038/s41588-018-0058-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Colantonio LD, et al. Atherosclerotic Risk and Statin Use Among Patients With Peripheral Artery Disease. J Am Coll Cardiol. 2020;76:251–64. https://doi.org/10.1016/j.jacc.2020.05.048.

    Article  PubMed  Google Scholar 

  71. Chaikof EL, et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg. 2018;67:2-77.e72. https://doi.org/10.1016/j.jvs.2017.10.044.

    Article  PubMed  Google Scholar 

  72. Scirica BM, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26. https://doi.org/10.1056/NEJMoa1307684.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

Dr. Gutierrez reports grants from the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Contributions

M.T. and C.S. research data for the article and wrote the manuscript. S.R. proposed the idea and overall structure of the manuscript. All other authors contributed substantially to the discussion of content and reviewed and/or edits the manuscript before submission.

Corresponding author

Correspondence to Manasi Tannu.

Ethics declarations

Conflicts of Interest

Dr. Rao reports no relationships with industry. Dr Tannu reports no conflicts. Dr. Hess reports receiving salary support from CPC Clinical Research; a member of the Executive Committee for EVOLVE-MI; and a grant from Amgen to CPC Clinical Research to fund the EVOLVE-MI trial. Dr. Lopes reports grants from Amgen, Bristol-Myers Squibb, GlaxoSmithKline, Medtronic, Pfizer, and Sanofi; consulting fees from AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, and Novo Nordisk; payment or honoraria from AstraZeneca, Daiichi Sankyo, Novo Nordisk, and Pfizer. The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tannu, M., Hess, C.N., Gutierrez, J.A. et al. Polyvascular Disease: A Narrative Review of Risk Factors, Clinical Outcomes and Treatment. Curr Cardiol Rep (2024). https://doi.org/10.1007/s11886-024-02063-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-024-02063-0

Keywords

Navigation