Skip to main content
Log in

Use of Virtual Reality and 3D Models in Contemporary Practice of Cardiology

  • New Therapies for Cardiovascular Disease (AA Bavry and MR Massoomi, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To provide an overview of the impact of virtual and augmented reality in contemporary cardiovascular medical practice.

Recent Findings

The utilization of virtual and augmented reality has emerged as an innovative technique in various cardiovascular subspecialties, including interventional adult, pediatric, and adult congenital as well as structural heart disease and heart failure. In particular, electrophysiology has proven valuable for both diagnostic and therapeutic procedures. The incorporation of 3D reconstruction modeling has significantly enhanced our understanding of patient anatomy and morphology, thereby improving diagnostic accuracy and patient outcomes.

Summary

The interactive modeling of cardiac structure and function within the virtual realm plays a pivotal role in comprehending complex congenital, structural, and coronary pathology. This, in turn, contributes to safer interventions and surgical procedures. Noteworthy applications include septal defect device closure, transcatheter valvular interventions, and left atrial occlusion device implantation. The implementation of virtual reality has been shown to yield cost savings in healthcare, reduce procedure time, minimize radiation exposure, lower intravenous contrast usage, and decrease the extent of anesthesia required. These benefits collectively result in a more efficient and effective approach to patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Burdea GC, Coiffet P. Virtual Reality Technology. New York: Wiley; 2003.

    Book  Google Scholar 

  2. Jiang Z, Guo Y, Wang Z. Digital twin to improve the virtual-real integration of industrial IoT. J Ind Inf Integr. 2021;22:100196.

    Google Scholar 

  3. Haleem A, Javaid M, Vaishya R. Industry 4.0 and its applications in orthopaedics. J Clin Orthop Trauma. 2019;10(3):615–6.

    Article  PubMed  Google Scholar 

  4. Bao X, Mao Y, Lin Q, Qiu Y, Chen S, Li L, et al. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen Res. 2013;8(31):2904–13.

    PubMed  PubMed Central  Google Scholar 

  5. Esfahlani SS. Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection. J Ind Inf Integr. 2019;15:42–9.

    Google Scholar 

  6. Danielsson O, Holm M, Syberfeldt A. Augmented reality smart glasses in industrial assembly: Current status and future challenges. J Ind Inf Integr. 2020;20:100175.

    Google Scholar 

  7. Moro C, Stromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ. 2017;10(6):549–59.

    Article  PubMed  Google Scholar 

  8. Plasencia DM. One step beyond virtual reality: connecting past and future developments. XRDS. 2015;22(1):18–23.

    Article  Google Scholar 

  9. Abrash M. Why You Won’t See Hard AR Anytime Soon. Available at http://blogs.valvesoftware.com/abrash/why-you-wont-see-hard-ar-anytime-soon/. Accessed May 2017.

  10. Jan ANB, Joris JD. Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution. J Biomed Opt. 2007;12(1):014039.

    Article  Google Scholar 

  11. De la Peña N, Weil P, Llobera J, Spanlang B, Friedman D, Sanchez-Vives MV, et al. Immersive Journalism: Immersive Virtual Reality for the First-Person Experience of News. Presence. 2010;19(4):291–301.

    Article  Google Scholar 

  12. Silva JNA, Southworth M, Raptis C, Silva J. Emerging Applications of Virtual Reality in Cardiovascular Medicine. JACC: Basic Transl Sci. 2018;3(3):420–30.

    PubMed  Google Scholar 

  13. Rymuza B, Grodecki K, Kaminski J, Scislo P, Huczek Z. Holographic imaging during transcatheter aortic valve implantation procedure in bicuspid aortic valve stenosis. Kardiol Pol. 2017;75(10):1056.

    Article  PubMed  Google Scholar 

  14. Gallagher AG, Cates CU. Virtual reality training for the operating room and cardiac catheterisation laboratory. The Lancet. 2004;364(9444):1538–40.

    Article  Google Scholar 

  15. Southworth MK, Silva JR, Silva JNA. Use of extended realities in cardiology. Trends Cardiovasc Med. 2020;30(3):143–8.

    Article  PubMed  Google Scholar 

  16. Culbertson C, Nicolas S, Zaharovits I, London ED, De La Garza R, Brody AL, et al. Methamphetamine craving induced in an online virtual reality environment. Pharmacol Biochem Behav. 2010;96(4):454–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. •• Arslan F, Gerckens U. Virtual support for remote proctoring in TAVR during COVID-19. Catheter Cardiovasc Interv. 2021;98(5):E733–6. This study demonstrates that virtual monitoring and proctoring of real time highly complex procedures such as TAVR is feasible and efficacious.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jang S-J, Liu J, Singh G, Al’Aref SJ, Caprio A, Moghadam AAA, et al. Abstract 11714: Augmented Reality Guidance for Transcatheter Septal Puncture Procedure in Structural Heart Interventions. Circulation. 2019;140(Suppl_1):A11714-A.

    Google Scholar 

  19. Cox K, Privitera MB, Alden T, Silva JR, Silva JNA. Chapter 21 - Augmented reality in medical devices. In Applied Human Factors in Medical Device Design, Privitera M. B., Ed. New York, NY, USA: Academic, 2019;327–337. Accessed: Nov. 10, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/B9780128161630000219.

  20. Goo HW, Park SJ, Yoo SJ. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Korean J Radiol. 2020;21(2):133–45.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stepanenko A, Perez LM, Ferre JC, Ybarra Falcon C, Perez de la Sota E, San Roman JA, et al. 3D Virtual modelling, 3D printing and extended reality for planning of implant procedure of short-term and long-term mechanical circulatory support devices and heart transplantation. Front Cardiovasc Med. 2023;10:1191705.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Davies RR, Hussain T, Tandon A. Using virtual reality simulated implantation for fit-testing pediatric patients for adult ventricular assist devices. JTCVS Tech. 2021;6:134–7.

    Article  PubMed  Google Scholar 

  23. Ramaswamy RK, Marimuthu SK, Ramarathnam KK, Vijayasekharan S, Rao KGS, Balakrishnan KR. Virtual reality-guided left ventricular assist device implantation in pediatric patient: Valuable presurgical tool. Ann Pediatr Cardiol. 2021;14(3):388–92.

    Article  PubMed  PubMed Central  Google Scholar 

  24. NHS. Surgeons use virtual reality to operate from different sides of the world. https://www.bartshealth.nhs.uk/news/surgeons-use-virtual-reality-to-operate-from-different-sides-of-the-world-2171.

  25. Liu J, Al’Aref SJ, Singh G, Caprio A, Moghadam AAA, Jang SJ, et al. An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PLoS ONE. 2019;14(7):e0219174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chu MW, Moore J, Peters T, Bainbridge D, McCarty D, Guiraudon GM, et al. Augmented reality image guidance improves navigation for beating heart mitral valve repair. Innovations (Phila). 2012;7(4):274–81.

    Article  PubMed  Google Scholar 

  27. Bruckheimer E, Rotschild C. Holography for imaging in structural heart disease. EuroIntervention. 2016;12 Suppl X:X81–X4.

    Article  PubMed  Google Scholar 

  28. Currie ME, McLeod AJ, Moore JT, Chu MW, Patel R, Kiaii B, et al. Augmented reality system for ultrasound guidance of transcatheter aortic valve implantation. Innovations (Phila). 2016;11(1):31–9; discussion 9.

  29. Butera G, Sturla F, Pluchinotta FR, Caimi A, Carminati M. Holographic augmented reality and 3D printing for advanced planning of sinus venosus ASD/partial anomalous pulmonary venous return percutaneous management. JACC Cardiovasc Interv. 2019;12(14):1389–91.

    Article  PubMed  Google Scholar 

  30. Zbronski K, Rymuza B, Scislo P, Kochman J, Huczek Z. Augmented reality in left atrial appendage occlusion. Kardiol Pol. 2018;76(1):212.

    Article  PubMed  Google Scholar 

  31. Bruckheimer E, Rotschild C. Holography in congenital heart disease: Diagnosis and transcatheter treatment. In: Butera G, Chessa M, Eicken A, Thomson JD, editors. Atlas of cardiac catheterization for congenital heart disease. Cham: Springer International Publishing; 2019. p. 383–6.

    Chapter  Google Scholar 

  32. Gartner: 25% of people to spend 1 hour daily in the metaverse by 2026 (2022) https://futureiot.tech/gartner-25-of-people-to-spend-1-hour-daily-in-the-Metaverse-by-2026/.

  33. Deng S, Wheeler G, Toussaint N, Munroe L, Bhattacharya S, Sajith G, et al. A virtual reality system for improved image-based planning of complex cardiac procedures. J Imaging. 2021;7(8).

  34. Raimondi F, Vida V, Godard C, Bertelli F, Reffo E, Boddaert N, et al. Fast-track virtual reality for cardiac imaging in congenital heart disease. J Card Surg. 2021;36(7):2598–602.

    Article  PubMed  Google Scholar 

  35. Kim B, Loke YH, Mass P, Irwin MR, Capeland C, Olivieri L, et al. A novel virtual reality medical image display system for group discussions of congenital heart disease: Development and usability testing. JMIR Cardio. 2020;4(1):e20633.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Patel N, Costa A, Sanders SP, Ezon D. Stereoscopic virtual reality does not improve knowledge acquisition of congenital heart disease. Int J Cardiovasc Imaging. 2021;37(7):2283–90.

    Article  PubMed  Google Scholar 

  37. Lau I, Gupta A, Sun Z. Clinical value of virtual reality versus 3D printing in congenital heart disease. Biomolecules. 2021;11(6).

  38. Milano EG, Pajaziti E, Schievano S, Cook A, Capelli C. P369 Patient specific virtual reality for education in congenital heart disease. Eur Heart J Cardiovasc Imaging. 2020;21(Supplement_1).

  39. Ong CS, Krishnan A, Huang CY, Spevak P, Vricella L, Hibino N, et al. Role of virtual reality in congenital heart disease. Congenit Heart Dis. 2018;13(3):357–61.

    Article  PubMed  Google Scholar 

  40. Sadeghi AH, Maat A, Taverne Y, Cornelissen R, Dingemans AC, Bogers A, et al. Virtual reality and artificial intelligence for 3-dimensional planning of lung segmentectomies. JTCVS Tech. 2021;7:309–21.

    Article  PubMed  PubMed Central  Google Scholar 

  41. van de Woestijne PC, Bakhuis W, Sadeghi AH, Peek JJ, Taverne Y, Bogers A. 3D virtual reality imaging of major aortopulmonary collateral arteries: A novel diagnostic modality. World J Pediatr Congenit Heart Surg. 2021;12(6):765–72.

    Article  PubMed  PubMed Central  Google Scholar 

  42. • Franson D, Dupuis A, Gulani V, Griswold M, Seiberlich N. A system for real-time, online mixed-reality visualization of cardiac magnetic resonance images. J Imaging. 2021;7(12):274. The work from this paper demonstrates real time system which allows users to view a mixed-reality with cardaic MRI that is shorter than the acquisition time.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bindschadler M, Buddhe S, Ferguson MR, Jones T, Friedman SD, Otto RK. HEARTBEAT4D: An open-source toolbox for turning 4D cardiac CT into VR/AR. J Digit Imaging. 2022;35(6):1759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aeckersberg G, Gkremoutis A, Schmitz-Rixen T, Kaiser E. The relevance of low-fidelity virtual reality simulators compared with other learning methods in basic endovascular skills training. J Vasc Surg. 2019;69(1):227–35.

    Article  PubMed  Google Scholar 

  45. Andersen NL, Jensen RO, Posth S, Laursen CB, Jørgensen R, Graumann O. Teaching ultrasound-guided peripheral venous catheter placement through immersive virtual reality: An explorative pilot study. Medicine (Baltimore). 2021;100(27):e26394.

    Article  PubMed  Google Scholar 

  46. Arshad I, De Mello P, Ender M, McEwen JD, Ferré ER. Reducing cybersickness in 360-degree virtual reality. Multisens Res. 2021:1–17.

  47. Jung C, Wolff G, Wernly B, Bruno RR, Franz M, Schulze PC, et al. Virtual and augmented reality in cardiovascular care: State-of-the-art and future perspectives. JACC Cardiovasc Imaging. 2022;15(3):519–32.

    Article  PubMed  Google Scholar 

  48. Mahtab EAF, Egorova AD. Current and future applications of virtual reality technology for cardiac interventions. Nat Rev Cardiol. 2022;19(12):779–80.

    Article  PubMed  PubMed Central  Google Scholar 

  49. •• Pezel T, Coisne A, Bonnet G, Martins RP, Adjedj J, Biere L, et al. Simulation-based training in cardiology: State-of-the-art review from the French Commission of Simulation Teaching (Commission d’enseignement par simulation-COMSI) of the French Society of Cardiology. Arch Cardiovasc Dis. 2021;114(1):73–84. This study showed that simulation learning is an important learning tool in different aspects of cardiology.

    Article  PubMed  Google Scholar 

  50. Spiegel B, Fuller G, Lopez M, Dupuy T, Noah B, Howard A, et al. Virtual reality for management of pain in hospitalized patients: A randomized comparative effectiveness trial. PLoS ONE. 2019;14(8):e0219115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Contribution to this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under the University of Florida and Florida State University Clinical and Translational Science Award UL1TR001427 (MA-A).

Author information

Authors and Affiliations

Authors

Contributions

Iva Minga: future directions, figures, references, and final proofreading Mohammad Al_ani: augmenting VR with AI and final proofreading Sarah moharem -Elgamal: Imaging role in congenital cardiology Aswathy Vaikom House: Role of VR Heart Failure Ahmed Sami abuzaid: role of VR in structural imaging Michael “paper conceptualization “ Saima Mangi: Abstract, Introduction, Table and Final Proof Reading.

Corresponding author

Correspondence to Saima Mangi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minga, I., Al-Ani, M.A., Moharem-Elgamal, S. et al. Use of Virtual Reality and 3D Models in Contemporary Practice of Cardiology. Curr Cardiol Rep (2024). https://doi.org/10.1007/s11886-024-02061-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-024-02061-2

Keywords

Navigation