Skip to main content
Log in

Contemporary Risk Models for In-Hospital and 30-Day Mortality After Percutaneous Coronary Intervention

  • Ischemic Heart Disease (D Mukherjee, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Risk models for mortality after percutaneous coronary intervention (PCI) are underutilized in clinical practice though they may be useful during informed consent, risk mitigation planning, and risk adjustment of hospital and operator outcomes. This review analyzed contemporary risk models for in-hospital and 30-day mortality after PCI.

Recent Findings

We reviewed eight contemporary risk models. Age, sex, hemodynamic status, acute coronary syndrome type, heart failure, and kidney disease were consistently found to be independent risk factors for mortality. These models provided good discrimination (C-statistic 0.85–0.95) for both pre-catheterization and comprehensive risk models that included anatomic variables.

Summary

There are several excellent models for PCI mortality risk prediction. Choice of the model will depend on the use case and population, though the CathPCI model should be the default for in-hospital mortality risk prediction in the United States. Future interventions should focus on the integration of risk prediction into clinical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Grayson AD, Moore RK, Jackson M, Rathore S, Sastry S, Gray TP, et al. Multivariate prediction of major adverse cardiac events after 9914 percutaneous coronary interventions in the north west of England. Heart. 2006;92(5):658–63. https://doi.org/10.1136/hrt.2005.066415.

    Article  CAS  PubMed  Google Scholar 

  2. Wu C, Hannan EL, Walford G, Ambrose JA, Holmes DR Jr, King SB 3rd, et al. A risk score to predict in-hospital mortality for percutaneous coronary interventions. J Am Coll Cardiol. 2006;47(3):654–60. https://doi.org/10.1016/j.jacc.2005.09.071.

    Article  PubMed  Google Scholar 

  3. •• Castro-Dominguez YS, Wang Y, Minges KE, McNamara RL, Spertus JA, Dehmer GJ, et al. Predicting in-hospital mortality in patients undergoing percutaneous coronary intervention. J Am Coll Cardiol. 2021;78(3):216–29. https://doi.org/10.1016/j.jacc.2021.04.067. This study created bedside, pre-catheterization, and full models for in-hospital mortality after PCI using a national multi-center registry.

    Article  PubMed  Google Scholar 

  4. Hamburger JN, Walsh SJ, Khurana R, Ding L, Gao M, Humphries KH, et al. Percutaneous coronary intervention and 30-day mortality: the British Columbia PCI risk score. Catheter Cardiovasc Interv. 2009;74(3):377–85. https://doi.org/10.1002/ccd.22151.

    Article  PubMed  Google Scholar 

  5. • Hannan EL, Zhong Y, Cozzens K, Ling FSK, Jacobs AK, King SB 3rd, et al. New York risk model and simplified risk score for in-hospital/30-day mortality for percutaneous coronary intervention. Am J Cardiol. 2023;206:23–30. https://doi.org/10.1016/j.amjcard.2023.08.075. Using the New York Percutaneous Coronary Intervention Reporting System, risk models were derived for a combination of 30-day and in-hospital mortality after PCI.

    Article  PubMed  Google Scholar 

  6. Tacey M, Dinh DT, Andrianopoulos N, Brennan AL, Stub D, Liew D, et al. Risk-adjusting key outcome measures in a Clinical Quality PCI Registry: development of a highly predictive model without the need to exclude high-risk conditions. JACC Cardiovasc Interv. 2019;12(19):1966–75. https://doi.org/10.1016/j.jcin.2019.07.002.

    Article  PubMed  Google Scholar 

  7. Waldo SW, Gokhale M, O’Donnell CI, Plomondon ME, Valle JA, Armstrong EJ, et al. Temporal trends in coronary angiography and percutaneous coronary intervention: insights from the VA clinical assessment, reporting, and tracking program. JACC Cardiovasc Interv. 2018;11(9):879–88. https://doi.org/10.1016/j.jcin.2018.02.035.

    Article  PubMed  Google Scholar 

  8. Kataruka A, Maynard CC, Kearney KE, Mahmoud A, Bell S, Doll JA, et al. Temporal trends in percutaneous coronary intervention and coronary artery bypass grafting: insights from the Washington Cardiac Care Outcomes Assessment Program. J Am Heart Assoc. 2020;9(11): e015317. https://doi.org/10.1161/JAHA.119.015317.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fanaroff AC, Wang TY. Risk prediction in percutaneous coronary intervention: solving the last mile problem. Circ Cardiovasc Interv. 2022;15(7): e012262. https://doi.org/10.1161/CIRCINTERVENTIONS.122.012262.

    Article  PubMed  Google Scholar 

  10. O’Connor GT, Malenka DJ, Quinton H, Robb JF, Kellett MA Jr, Shubrooks S, et al. Multivariate prediction of in-hospital mortality after percutaneous coronary interventions in 1994–1996. Northern New England Cardiovascular Disease Study Group. J Am Coll Cardiol. 1999;34(3):681–91. https://doi.org/10.1016/s0735-1097(99)00267-3.

    Article  CAS  PubMed  Google Scholar 

  11. Moscucci M, Kline-Rogers E, Share D, O’Donnell M, Maxwell-Eward A, Meengs WL, et al. Simple bedside additive tool for prediction of in-hospital mortality after percutaneous coronary interventions. Circulation. 2001;104(3):263–8. https://doi.org/10.1161/01.cir.104.3.263.

    Article  CAS  PubMed  Google Scholar 

  12. Chowdhary S, Ivanov J, Mackie K, Seidelin PH, Dzavik V. The Toronto score for in-hospital mortality after percutaneous coronary interventions. Am Heart J. 2009;157(1):156–63. https://doi.org/10.1016/j.ahj.2008.08.026.

    Article  PubMed  Google Scholar 

  13. Madan P, Elayda MA, Lee VV, Wilson JM. Predicting major adverse cardiac events after percutaneous coronary intervention: the Texas Heart Institute risk score. Am Heart J. 2008;155(6):1068–74. https://doi.org/10.1016/j.ahj.2008.01.034.

    Article  PubMed  Google Scholar 

  14. de Mulder M, Gitt A, van Domburg R, Hochadel M, Seabra-Gomes R, Serruys PW, et al. EuroHeart score for the evaluation of in-hospital mortality in patients undergoing percutaneous coronary intervention. Eur Heart J. 2011;32(11):1398–408. https://doi.org/10.1093/eurheartj/ehr034.

    Article  PubMed  Google Scholar 

  15. Peterson ED, Dai D, DeLong ER, Brennan JM, Singh M, Rao SV, et al. Contemporary mortality risk prediction for percutaneous coronary intervention: results from 588,398 procedures in the National Cardiovascular Data Registry. J Am Coll Cardiol. 2010;55(18):1923–32. https://doi.org/10.1016/j.jacc.2010.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mrdovic I, Savic L, Krljanac G, Asanin M, Perunicic J, Lasica R, et al. Predicting 30-day major adverse cardiovascular events after primary percutaneous coronary intervention. The RISK-PCI score Int J Cardiol. 2013;162(3):220–7. https://doi.org/10.1016/j.ijcard.2011.05.071.

    Article  PubMed  Google Scholar 

  17. Hannan EL, Farrell LS, Walford G, Jacobs AK, Berger PB, Holmes DR Jr, et al. The New York State risk score for predicting in-hospital/30-day mortality following percutaneous coronary intervention. JACC Cardiovasc Interv. 2013;6(6):614–22. https://doi.org/10.1016/j.jcin.2013.02.015.

    Article  PubMed  Google Scholar 

  18. Brennan JM, Curtis JP, Dai D, Fitzgerald S, Khandelwal AK, Spertus JA, et al. Enhanced mortality risk prediction with a focus on high-risk percutaneous coronary intervention: results from 1,208,137 procedures in the NCDR (National Cardiovascular Data Registry). JACC Cardiovasc Interv. 2013;6(8):790–9. https://doi.org/10.1016/j.jcin.2013.03.020.

    Article  PubMed  Google Scholar 

  19. Farooq V, van Klaveren D, Steyerberg EW, Meliga E, Vergouwe Y, Chieffo A, et al. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II. Lancet. 2013;381(9867):639–50. https://doi.org/10.1016/S0140-6736(13)60108-7.

    Article  PubMed  Google Scholar 

  20. Hizoh I, Gulyas Z, Domokos D, Banhegyi G, Majoros Z, Major L, et al. A novel risk model including vascular access site for predicting 30-day mortality after primary PCI: The ALPHA score. Cardiovasc Revasc Med. 2017;18(1):33–9. https://doi.org/10.1016/j.carrev.2016.10.002.

    Article  PubMed  Google Scholar 

  21. • Singh M, Gulati R, Lewis BR, Zhou Z, Alkhouli M, Friedman P, et al. Multimorbidity and mortality models to predict complications following percutaneous coronary interventions. Circ Cardiovasc Interv. 2022;15(7): e011540. https://doi.org/10.1161/CIRCINTERVENTIONS.121.011540. Instead of traditional statistical models, this study used a machine learning algorithm to select variables for a risk prediction model for in-hospital mortality after PCI based on data from the Mayo Clinic.

    Article  PubMed  Google Scholar 

  22. Doll JA, O’Donnell CI, Plomondon ME, Waldo SW. Contemporary clinical and coronary anatomic risk model for 30-day mortality after percutaneous coronary intervention. Circ Cardiovasc Interv. 2021;14(12): e010863. https://doi.org/10.1161/CIRCINTERVENTIONS.121.010863.

    Article  PubMed  Google Scholar 

  23. Inohara T, Kohsaka S, Yamaji K, Ishii H, Amano T, Uemura S, et al. Risk stratification model for in-hospital death in patients undergoing percutaneous coronary intervention: a nationwide retrospective cohort study in Japan. BMJ Open. 2019;9(5): e026683. https://doi.org/10.1136/bmjopen-2018-026683.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Al’Aref SJ, Singh G, van Rosendael AR, Kolli KK, Ma X, Maliakal G, et al. Determinants of in-hospital mortality after percutaneous coronary intervention: a machine learning approach. J Am Heart Assoc. 2019;8(5): e011160. https://doi.org/10.1161/JAHA.118.011160.

    Article  PubMed  PubMed Central  Google Scholar 

  25. McAllister KS, Ludman PF, Hulme W, de Belder MA, Stables R, Chowdhary S, et al. A contemporary risk model for predicting 30-day mortality following percutaneous coronary intervention in England and Wales. Int J Cardiol. 2016;210:125–32. https://doi.org/10.1016/j.ijcard.2016.02.085.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zack CJ, Senecal C, Kinar Y, Metzger Y, Bar-Sinai Y, Widmer RJ, et al. Leveraging machine learning techniques to forecast patient prognosis after percutaneous coronary intervention. JACC Cardiovasc Interv. 2019;12(14):1304–11. https://doi.org/10.1016/j.jcin.2019.02.035.

    Article  PubMed  Google Scholar 

  27. Niimi N, Shiraishi Y, Sawano M, Ikemura N, Inohara T, Ueda I, et al. Machine learning models for prediction of adverse events after percutaneous coronary intervention. Sci Rep. 2022;12(1):6262. https://doi.org/10.1038/s41598-022-10346-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zahalka M, Sanchez-Jimenez E, Levi Y, Abu-Fanne R, Saada M, Lev EI, et al. Clinical use of CathPCI Registry risk score and its validation to predict long-term mortality. Am J Cardiol. 2023;201:268–72. https://doi.org/10.1016/j.amjcard.2023.06.004.

    Article  PubMed  Google Scholar 

  29. Feldman DN, Yeh RW. Public reporting of percutaneous coronary intervention mortality in New York State: are we helping our patients? Circ Cardiovasc Qual Outcomes. 2017;10(9):e004027. https://doi.org/10.1161/CIRCOUTCOMES.117.004027.

  30. Fernandez G, Narins CR, Bruckel J, Ayers B, Ling FS. Patient and physician perspectives on public reporting of mortality ratings for percutaneous coronary intervention in New York State. Circ Cardiovasc Qual Outcomes. 2017;10(9):e003511. https://doi.org/10.1161/CIRCOUTCOMES.116.003511.

  31. Wadhera RK, Joynt Maddox KE, Yeh RW, Bhatt DL. Public reporting of percutaneous coronary intervention outcomes: moving beyond the status quo. JAMA Cardiol. 2018;3(7):635–40. https://doi.org/10.1001/jamacardio.2018.0947.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Blumenthal DM, Valsdottir LR, Zhao Y, Shen C, Kirtane AJ, Pinto DS, et al. A survey of interventional cardiologists’ attitudes and beliefs about public reporting of percutaneous coronary intervention. JAMA Cardiol. 2018;3(7):629–34. https://doi.org/10.1001/jamacardio.2018.1095.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sherwood MW, Brennan JM, Ho KK, Masoudi FA, Messenger JC, Weaver WD, et al. The impact of extreme-risk cases on hospitals’ risk-adjusted percutaneous coronary intervention mortality ratings. JACC Cardiovasc Interv. 2015;8(1 Pt A):10–6. https://doi.org/10.1016/j.jcin.2014.07.025.

    Article  PubMed  Google Scholar 

  34. Morrison J, Plomondon ME, O’Donnell CI, Giri J, Doll JA, Valle JA, et al. Perceptions of public and nonpublic reporting of interventional cardiology outcomes and its impact on practice: insights from the Veterans Affairs Clinical Assessment, reporting, and tracking program. J Am Heart Assoc. 2019;8(22): e014212. https://doi.org/10.1161/JAHA.119.014212.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Boyden TF, Joynt KE, McCoy L, Neely ML, Cavender MA, Dixon S, et al. Collaborative quality improvement vs public reporting for percutaneous coronary intervention: a comparison of percutaneous coronary intervention in New York vs Michigan. Am Heart J. 2015;170(6):1227–33. https://doi.org/10.1016/j.ahj.2015.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Engel J, van der Wulp I, de Bruijne M, Wagner C. A cross-sectional multicentre study of cardiac risk score use in the management of unstable angina and non-ST-elevation myocardial infarction. BMJ Open. 2015;5(11): e008523. https://doi.org/10.1136/bmjopen-2015-008523.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Engel J, Heeren MJ, van der Wulp I, de Bruijne MC, Wagner C. Understanding factors that influence the use of risk scoring instruments in the management of patients with unstable angina or non-ST-elevation myocardial infarction in the Netherlands: a qualitative study of health care practitioners’ perceptions. BMC Health Serv Res. 2014;14:418. https://doi.org/10.1186/1472-6963-14-418.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goff SL, Mazor KM, Ting HH, Kleppel R, Rothberg MB. How cardiologists present the benefits of percutaneous coronary interventions to patients with stable angina: a qualitative analysis. JAMA Intern Med. 2014;174(10):1614–21. https://doi.org/10.1001/jamainternmed.2014.3328.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qintar M, Humphries KH, Park JE, Arnold SV, Tang Y, Jones P, et al. Individualizing revascularization strategy for diabetic patients with multivessel coronary disease. J Am Coll Cardiol. 2019;74(16):2074–84. https://doi.org/10.1016/j.jacc.2019.07.083.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Metkus TS, Baird-Zars VM, Alfonso CE, Alviar CL, Barnett CF, Barsness GW, et al. Critical Care Cardiology Trials Network (CCCTN): a cohort profile. Eur Heart J Qual Care Clin Outcomes. 2022;8(7):703–8. https://doi.org/10.1093/ehjqcco/qcac055.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Goldstein BA, Navar AM, Pencina MJ, Ioannidis JP. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc. 2017;24(1):198–208. https://doi.org/10.1093/jamia/ocw042.

    Article  PubMed  Google Scholar 

  42. Valle JA, Glorioso TJ, Bricker R, Baron AE, Armstrong EJ, Bhatt DL, et al. Association of coronary anatomical complexity with clinical outcomes after percutaneous or surgical revascularization in the Veterans Affairs Clinical Assessment reporting and tracking program. JAMA Cardiol. 2019;4(8):727–35. https://doi.org/10.1001/jamacardio.2019.1923.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.C. and J.D wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jacob Doll.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

No animal or human subjects were used for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, C., Doll, J. Contemporary Risk Models for In-Hospital and 30-Day Mortality After Percutaneous Coronary Intervention. Curr Cardiol Rep (2024). https://doi.org/10.1007/s11886-024-02047-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-024-02047-0

Keywords

Navigation