Skip to main content
Log in

Assessing Regurgitation Severity, Adverse Remodeling, and Fibrosis with CMR in Aortic Regurgitation

  • Cardiac PET, CT, and MRI (P Cremer, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiac magnetic resonance (CMR) is emerging as a valuable imaging modality for the assessment of aortic regurgitation (AR). In this review, we discuss the assessment of AR severity, left ventricular (LV) remodeling, and tissue characterization by CMR while highlighting the latest studies and addressing future research needs.

Recent Findings

Recent studies have further established CMR-based thresholds of AR severity and LV remodeling that are associated with adverse clinical outcomes, and lower than current guideline criteria. In addition, tissue profiling with late gadolinium enhancement (LGE) and extracellular volume (ECV) quantification can reliably assess adverse myocardial tissue remodeling which is also associated with adverse outcomes.

Summary

The strengths and reproducibility of CMR in evaluating ventricular volumes, tissue characteristics, and regurgitation severity position it as an excellent modality in evaluating and following AR patients. Advanced CMR techniques for the detection of tissue remodeling have shown significant potential and merit further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

AR:

Aortic regurgitation

TTE:

Transthoracic echocardiography

CMR:

Cardiac magnetic resonance

PC:

Phase contrast

LGE:

Late gadolinium enhancement

ACC/AHA:

American College of Cardiology/American Heart Association

RVol:

Regurgitant volume

RF:

Regurgitant fraction

LVSV:

Left ventricular stroke volume

LVESV:

Left ventricular end-systolic volume

LVEDV:

Left ventricular end-diastolic volume

LVESD:

Left ventricular end-systolic diameter

LVEDD:

Left ventricular end-diastolic diameter

iECV:

Indexed extracellular volume

HDR:

Holodiastolic flow reversal

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Cawley PJ, Hamilton-Craig C, Owens DS, et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ Cardiovasc Imaging. 2013;6:48–57.

    Article  PubMed  Google Scholar 

  2. Myerson SG, D’arcy J, Mohiaddin R, Greenwood JP, Karamitsos TD, Francis JM, et al. Aortic regurgitation quantification using cardiovascular magnetic resonance: association with clinical outcome. Circulation. 2012. https://doi.org/10.1161/CIRCULATIONAHA.111.083600.

    Article  PubMed  Google Scholar 

  3. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJS, Cleland JGF, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J. 2000;21:1387–96.

    Article  CAS  PubMed  Google Scholar 

  4. Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021. https://doi.org/10.1161/CIR.0000000000000923.

    Article  PubMed  Google Scholar 

  5. Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS guidelines for the management of valvular heart disease: developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2022;43:561–632.

    Article  PubMed  Google Scholar 

  6. Wisenbaugh T, Spann JF, Carabello BA. Differences in myocardial performance and load between patients with similar amounts of chronic aortic versus chronic mitral regurgitation. J Am Coll Cardiol. 1984;3:916–23.

    Article  CAS  PubMed  Google Scholar 

  7. Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017. https://doi.org/10.1016/j.echo.2017.01.007.

    Article  PubMed  Google Scholar 

  8. Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: society for cardiovascular magnetic resonance (SCMR): Board of Trustees Task Force on standardized post-processing. J Cardiovasc Magn Reson. 2020;22:19.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Myerson SG. CMR in evaluating valvular heart disease: diagnosis, severity, and outcomes. JACC Cardiovasc Imaging. 2021. https://doi.org/10.1016/j.jcmg.2020.09.029.

    Article  PubMed  Google Scholar 

  10. • Malahfji M, Crudo V, Kaolawanich Y, et al. Influence of cardiac remodeling on clinical outcomes in patients with aortic regurgitation. J Am Coll Cardiol. 2023;81:1885–98 This is a study on asymptomatic chronic ≥ moderate AR patients; RVol 47 mL and RF 43% were optimally associated with clinical outcomes. In addition, iLVESV ≥ 43 mL/m2 showed independent association with outcomes and higher incidence of events, and iLVESV as a continuous variable showed stronger association with outcomes compared to linear dimensions.

    Article  PubMed  Google Scholar 

  11. • Hashimoto G, Enriquez-Sarano M, Stanberry LI, et al. Association of left ventricular remodeling assessment by cardiac magnetic resonance with outcomes in patients with chronic aortic regurgitation. JAMA Cardiol. 2022;7:924–33. In this study of chronic ≥ moderate AR patients, LV volumes were larger on CMR compared to TTE and correlated with symptoms, iLVESV ≥ 45 mL/m2 was independently associated with clinical outcomes in asymptomatic patients, and 37% of patients with iLVESD < 25 mm/m2 had iLVESV ≥ 45 mL/m2 and considering RF in addition to iLVESV increased prognostic value.

    Article  PubMed  PubMed Central  Google Scholar 

  12. • Senapati A, Malahfji M, Debs D, Yang EY, Nguyen DT, Graviss EA, Shah DJ. Regional replacement and diffuse interstitial fibrosis in aortic regurgitation. JACC Cardiovasc Imaging. 2021;14:2170–82. In this study of chronic AR patients, iECV and RF were independently associated with death or valve intervention after adjusting for clinical variables. Patients with iECV ≥ 24 mL/m2 and RF ≥ 30% had the highest incidence of events, followed by patients with iECV < 24 mL and RF ≥ 30%.

    Article  PubMed  Google Scholar 

  13. Chatzimavroudis GP, Walker PG, Oshinski JN, Franch RH, Pettigrew RI, Yoganathan AP. Slice location dependence of aortic regurgitation measurements with MR phase velocity mapping. Magn Reson Med. 1997;37:545–51.

    Article  CAS  PubMed  Google Scholar 

  14. Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner K-F, et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol. 2005;15:2172–84.

    Article  PubMed  Google Scholar 

  15. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15:51.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Iwamoto Y, Inage A, Tomlinson G, Lee KJ, Grosse-Wortmann L, Seed M, et al. Direct measurement of aortic regurgitation with phase-contrast magnetic resonance is inaccurate: proposal of an alternative method of quantification. Pediatr Radiol. 2014. https://doi.org/10.1007/s00247-014-3017-x.

    Article  PubMed  Google Scholar 

  17. Honda N, Machida K, Hashimoto M, et al. Aortic regurgitation: quantitation with MR imaging velocity mapping. Radiology. 1993. https://doi.org/10.1148/radiology.186.1.8416562.

    Article  PubMed  Google Scholar 

  18. Vejpongsa P, Xu J, Quinones MA, Shah DJ, Zoghbi WA. Differences in cardiac remodeling in left-sided valvular regurgitation: implications for optimal definition of significant aortic regurgitation. JACC Cardiovasc Imaging. 2022;15:1730–41.

    Article  PubMed  Google Scholar 

  19. Kammerlander AA, Wiesinger M, Duca F, et al. Diagnostic and prognostic utility of cardiac magnetic resonance imaging in aortic regurgitation. JACC Cardiovasc Imaging. 2019. https://doi.org/10.1016/j.jcmg.2018.08.036.

    Article  PubMed  Google Scholar 

  20. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson. 2020;22:17.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bolen MA, Popovic ZB, Rajiah P, Gabriel RS, Zurick AO, Lieber ML, et al. Cardiac MR assessment of aortic regurgitation: holodiastolic flow reversal in the descending aorta helps stratify severity. Radiology. 2011. https://doi.org/10.1148/radiol.11102064.

    Article  PubMed  Google Scholar 

  22. Debl K, Djavidani B, Buchner S, Heinicke N, Fredersdorf S, Haimerl J, et al. Assessment of the anatomic regurgitant orifice in aortic regurgitation: a clinical magnetic resonance imaging study. Heart. 2008;94:e8.

    Article  CAS  PubMed  Google Scholar 

  23. Taniguchi K, Kawamaoto T, Kuki S, Masai T, Mitsuno M, Nakano S, et al. Left ventricular myocardial remodeling and contractile state in chronic aortic regurgitation. Clin Cardiol. 2000;23:608–14.

    Article  CAS  PubMed  Google Scholar 

  24. Yang L-T, Michelena HI, Scott CG, Enriquez-Sarano M, Pislaru SV, Schaff HV, et al. Outcomes in chronic hemodynamically significant aortic regurgitation and limitations of current guidelines. J Am Coll Cardiol. 2019;73:1741–52.

    Article  PubMed  Google Scholar 

  25. Borer JS, Herrold EM, Carter JN, Catanzaro DF, Supino PG. Cellular and molecular basis of remodeling in valvular heart diseases. Heart Fail Clin. 2006;2:415–24.

    Article  PubMed  Google Scholar 

  26. Azevedo CF, Nigri M, Higuchi ML, Pomerantzeff PM, Spina GS, Sampaio RO, et al. Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J Am Coll Cardiol. 2010;56:278–87.

    Article  PubMed  Google Scholar 

  27. Borer JS, Truter S, Herrold EM, Falcone DJ, Pena M, Carter JN, Dumlao TF, et al. Myocardial fibrosis in chronic aortic regurgitation: molecular and cellular responses to volume overload. Circulation. 2002;105:1837–42.

    Article  CAS  PubMed  Google Scholar 

  28. Malahfji M, Senapati A, Tayal B, Nguyen DT, Graviss EA, Nagueh SF, et al. Myocardial scar and mortality in chronic aortic regurgitation. J Am Heart Assoc. 2020. https://doi.org/10.1161/JAHA.120.018731.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Croisille P, Revel D, Saeed M. Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside. Eur Radiol. 2006. https://doi.org/10.1007/s00330-006-0244-z.

    Article  PubMed  Google Scholar 

  30. Selvadurai BSN, Puntmann VO, Bluemke DA, et al. Definition of left ventricular segments for cardiac magnetic resonance imaging. JACC Cardiovasc Imaging. 2018;11:926–8.

    Article  PubMed  Google Scholar 

  31. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolutionT1 mapping of the heart. Magn Reson Med. 2004;52:141–6.

    Article  PubMed  Google Scholar 

  32. Ravenstein DMDC, Bouzin C, Lazam S, et al. Histological validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from modified Look-Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson. 2015. https://doi.org/10.1186/s12968-015-0150-0.

    Article  Google Scholar 

  33. Fernández-Golfín C, Hinojar-Baydes R, González-Gómez A, et al. Prognostic implications of cardiac magnetic resonance feature tracking derived multidirectional strain in patients with chronic aortic regurgitation. Eur Radiol. 2021;31:5106–15.

    Article  PubMed  Google Scholar 

  34. Schuster A, Hor KN, Kowallick JT, Beerbaum P, Kutty S. Cardiovascular magnetic resonance myocardial feature tracking. Circ Cardiovasc Imaging. 2016. https://doi.org/10.1161/circimaging.115.004077.

    Article  PubMed  Google Scholar 

  35. Bissell MM, Hess AT, Biasiolli L, et al. Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ Cardiovasc Imaging. 2013;6:499–507.

    Article  PubMed  Google Scholar 

  36. Alvarez A, Martinez V, Pizarro G, Recio M, Cabrera JÁ. Clinical use of 4D flow MRI for quantification of aortic regurgitation. Open Heart. 2020. https://doi.org/10.1136/openhrt-2019-001158.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Uretsky S, Supariwala A, Nidadovolu P, Khokhar SS, Comeau C, Shubayev O, et al. Quantification of left ventricular remodeling in response to isolated aortic or mitral regurgitation. J Cardiovasc Magn Reson. 2010;12:32.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and A.B. wrote the main manuscript text, prepared the figures and the table. All authors reviewed the manuscript.

Corresponding author

Correspondence to Dipan J. Shah.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, M., Bersali, A., Darwish, A. et al. Assessing Regurgitation Severity, Adverse Remodeling, and Fibrosis with CMR in Aortic Regurgitation. Curr Cardiol Rep (2024). https://doi.org/10.1007/s11886-024-02044-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-024-02044-3

Keywords

Navigation