Skip to main content
Log in

Multi-proteomic Biomarker Risk Scores for Predicting Risk and Guiding Therapy in Patients with Coronary Artery Disease

  • Cardiac Biomarkers (AA Quyyumi, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Patients with established coronary artery disease (CAD) are at high residual risk for adverse events, despite guideline-based treatments. Herein, we aimed to determine whether risk scores based on multiple circulating biomarkers that represent activation of various pathophysiologically important pathways involved in atherosclerosis and myocardial dysfunction help identify those at greatest residual risk.

Recent Findings

Numerous circulating proteins, representing dysregulation of the pathways involved in the development and stability of coronary and myocardial diseases, have been identified. When aggregated together, biomarker risk scores (BRS) more accurately stratify patients with established CAD that may help target interventions in those individuals who are at elevated risk. Moreover, intensification of guideline-based therapies has been associated with parallel improvements in both BRS and outcomes, indicating that these risk scores may be employed clinically to target therapy.

Summary

Multi-protein BRS are predictive of risk, independent of, and in addition to traditional risk factor assessments in patients with CAD. Those with elevated risk may benefit from optimization of therapies, and improvements in the BRS will identify those with improved outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.

    PubMed  PubMed Central  Google Scholar 

  2. Ambrose JA, Fuster V. The risk of coronary occlusion is not proportional to the prior severity of coronary stenoses. Heart. 1998;79(1):3–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Little WC, Applegate RJ. Role of plaque size and degree of stenosis in acute myocardial infarction. Cardiol Clin. 1996;14(2):221–8.

    CAS  PubMed  Google Scholar 

  4. Dawber TR, Meadors GF, Moore FE Jr. Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health Nations Health. 1951;41(3):279–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47.

    CAS  PubMed  Google Scholar 

  6. Shlipak MG, Ix JH, Bibbins-Domingo K, Lin F, Whooley MA. Biomarkers to predict recurrent cardiovascular disease: the Heart and Soul Study. Am J Med. 2008;121(1):50–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhatt DL, Eagle KA, Ohman EM, Hirsch AT, Goto S, Mahoney EM, et al. Comparative determinants of 4-year cardiovascular event rates in stable outpatients at risk of or with atherothrombosis. JAMA. 2010;304(12):1350–7.

    CAS  PubMed  Google Scholar 

  8. Steen DL, Khan I, Andrade K, Koumas A, Giugliano RP. Event rates and risk factors for recurrent cardiovascular events and mortality in a contemporary post acute coronary syndrome population representing 239 234 patients during 2005 to 2018 in the United States. J Am Heart Assoc. 2022;11(9):e022198.

    PubMed  PubMed Central  Google Scholar 

  9. Eapen DJ, Manocha P, Patel RS, Hammadah M, Veledar E, Wassel C, et al. Aggregate risk score based on markers of inflammation, cell stress, and coagulation is an independent predictor of adverse cardiovascular outcomes. J Am Coll Cardiol. 2013;62(4):329–37.

    PubMed  PubMed Central  Google Scholar 

  10. Ghasemzadeh N, Hayek SS, Ko YA, Eapen DJ, Patel RS, Manocha P, et al. Pathway-specific aggregate biomarker risk score is associated with burden of coronary artery disease and predicts near-term risk of myocardial infarction and death. Circ Cardiovasc Qual Outcomes. 2017;10(3).

  11. Brown TM, Bittner V. Biomarkers of atherosclerosis: clinical applications. Curr Cardiol Rep. 2008;10(6):497–504.

    PubMed  PubMed Central  Google Scholar 

  12. Hoefer IE, Steffens S, Ala-Korpela M, Back M, Badimon L, Bochaton-Piallat ML, et al. Novel methodologies for biomarker discovery in atherosclerosis. Eur Heart J. 2015;36(39):2635–42.

    CAS  PubMed  Google Scholar 

  13. Kampoli AM, Tousoulis D, Antoniades C, Siasos G, Stefanadis C. Biomarkers of premature atherosclerosis. Trends Mol Med. 2009;15(7):323–32.

    CAS  PubMed  Google Scholar 

  14. Insull W Jr. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am J Med. 2009;122(1 Suppl):S3–14.

    CAS  PubMed  Google Scholar 

  15. Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1):56.

    PubMed  Google Scholar 

  16. Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013;11:117.

    PubMed  PubMed Central  Google Scholar 

  17. Badimon L, Padro T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care. 2012;1(1):60–74.

    PubMed  PubMed Central  Google Scholar 

  18. Burgess S, Ference BA, Staley JR, Freitag DF, Mason AM, Nielsen SF, et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a Mendelian randomization analysis. JAMA Cardiol. 2018;3(7):619–27.

    PubMed  PubMed Central  Google Scholar 

  19. Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res. 2016;118(4):547–63.

    CAS  PubMed  Google Scholar 

  20. Orsó E, Schmitz G. Lipoprotein(a) and its role in inflammation, atherosclerosis and malignancies. Clin Res Cardiol Suppl. 2017;12(Suppl 1):31–7.

    PubMed  PubMed Central  Google Scholar 

  21. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–87.

    PubMed  Google Scholar 

  22. Ignarro LJ, Napoli C. Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr Diab Rep. 2005;5(1):17–23.

    CAS  PubMed  Google Scholar 

  23. Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol. 2018;15(6):351–70.

    PubMed  Google Scholar 

  24. Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med. 2013;19(9):1166–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lundberg AM, Hansson GK. Innate immune signals in atherosclerosis. Clin Immunol. 2010;134(1):5–24.

    CAS  PubMed  Google Scholar 

  26. Cybulsky MI, Gimbrone MA Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991;251(4995):788–91.

    CAS  PubMed  Google Scholar 

  27. Gisterå A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13(6):368–80.

    PubMed  Google Scholar 

  28. Park YM, Febbraio M, Silverstein RL. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest. 2009;119(1):136–45.

    CAS  PubMed  Google Scholar 

  29. Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209(1):13–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Clarke MC, Talib S, Figg NL, Bennett MR. Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation: effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ Res. 2010;106(2):363–72.

    CAS  PubMed  Google Scholar 

  32. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66.

    CAS  PubMed  Google Scholar 

  33. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368(21):2004–13.

    CAS  PubMed  Google Scholar 

  34. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89(1):36–44.

    PubMed  Google Scholar 

  35. Ruiz JL, Weinbaum S, Aikawa E, Hutcheson JD. Zooming in on the genesis of atherosclerotic plaque microcalcifications. J Physiol. 2016;594(11):2915–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Criqui MH, Denenberg JO, Ix JH, McClelland RL, Wassel CL, Rifkin DE, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA. 2014;311(3):271–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103(8):1051–6.

    CAS  PubMed  Google Scholar 

  38. Ruiz JL, Hutcheson JD, Aikawa E. Cardiovascular calcification: current controversies and novel concepts. Cardiovasc Pathol. 2015;24(4):207–12.

    CAS  PubMed  Google Scholar 

  39. Yurdagul A, Doran AC, Cai B, Fredman G, Tabas IA. Mechanisms and consequences of defective efferocytosis in atherosclerosis. Front Cardiovasc Med. 2018;4.

  40. Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94(6):2493–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Unemori EN, Lark MW, et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res. 1994;75(1):181–9.

    CAS  PubMed  Google Scholar 

  43. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–25.

    CAS  PubMed  Google Scholar 

  44. Brody E, Gold L, Mehan M, Ostroff R, Rohloff J, Walker J, et al. Life′s simple measures: unlocking the proteome. J Mol Biol. 2012;422(5):595–606.

    CAS  PubMed  Google Scholar 

  45. Lundberg M, Eriksson A, Tran B, Assarsson E, Fredriksson S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 2011;39(15):e102.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017;14(5):314.

    PubMed  Google Scholar 

  47. Tsioufis P, Theofilis P, Tsioufis K, Tousoulis D. The impact of cytokines in coronary atherosclerotic plaque: current therapeutic approaches. Int J Mol Sci. 2022;23(24).

  48. Libby P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J Am Coll Cardiol. 2017;70(18):2278–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schofer N, Ludwig S, Rübsamen N, Schnabel R, Lackner KJ, Ruprecht HJ, et al. Prognostic impact of interleukin-1 receptor antagonist in patients with documented coronary artery disease. Int J Cardiol. 2018;257:24–9.

    PubMed  Google Scholar 

  50. Calabrese LH, Rose-John S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat Rev Rheumatol. 2014;10(12):720–7.

    CAS  PubMed  Google Scholar 

  51. Held C, White HD, Stewart RAH, Budaj A, Cannon CP, Hochman JS, et al. Inflammatory biomarkers interleukin-6 and C-reactive protein and outcomes in stable coronary heart disease: experiences from the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. J Am Heart Assoc. 2017;6(10).

  52. Mold C, Gewurz H, Du Clos TW. Regulation of complement activation by C-reactive protein. Immunopharmacology. 1999;42(1–3):23–30.

    CAS  PubMed  Google Scholar 

  53. Sack GH. Serum amyloid A - a review. Mol Med. 2018;24(1):46.

    PubMed  PubMed Central  Google Scholar 

  54. Shridas P, Tannock LR. Role of serum amyloid A in atherosclerosis. Curr Opin Lipidol. 2019;30(4):320–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wilson PG, Thompson JC, Webb NR, de Beer FC, King VL, Tannock LR. Serum amyloid A, but not C-reactive protein, stimulates vascular proteoglycan synthesis in a pro-atherogenic manner. Am J Pathol. 2008;173(6):1902–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hemingway H, Philipson P, Chen R, Fitzpatrick NK, Damant J, Shipley M, et al. Evaluating the quality of research into a single prognostic biomarker: a systematic review and meta-analysis of 83 studies of C-reactive protein in stable coronary artery disease. PLoS Med. 2010;7(6):e1000286.

    PubMed  PubMed Central  Google Scholar 

  57. Ridker PM, Bhatt DL, Pradhan AD, Glynn RJ, MacFadyen JG, Nissen SE, et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. Lancet. 2023;401(10384):1293–301.

    CAS  PubMed  Google Scholar 

  58. Ahmed MS, Jadhav AB, Hassan A, Meng QH. Acute phase reactants as novel predictors of cardiovascular disease. ISRN Inflamm. 2012;2012:953461.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ikeda U, Matsui K, Murakami Y, Shimada K. Monocyte chemoattractant protein-1 and coronary artery disease. Clin Cardiol. 2002;25(4):143–7.

    PubMed  Google Scholar 

  60. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. de Lemos JA, Morrow DA, Blazing MA, Jarolim P, Wiviott SD, Sabatine MS, et al. Serial measurement of monocyte chemoattractant protein-1 after acute coronary syndromes: results from the A to Z trial. J Am Coll Cardiol. 2007;50(22):2117–24.

    PubMed  Google Scholar 

  62. Unsicker K, Spittau B, Krieglstein K. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev. 2013;24(4):373–84.

    CAS  PubMed  Google Scholar 

  63. Bonaca MP, Morrow DA, Braunwald E, Cannon CP, Jiang S, Breher S, et al. Growth differentiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: observations from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol. 2011;31(1):203–10.

    CAS  PubMed  Google Scholar 

  64. Velazquez JM, Lindquist S. hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell. 1984;36(3):655–62.

    CAS  PubMed  Google Scholar 

  65. Ghasemzadeh N, Brooks MM, Vlachos H, Hardison R, Sikora S, Sperling L, et al. An aggregate biomarker risk score predicts high risk of near-term myocardial infarction and death: findings from BARI 2D (Bypass Angioplasty Revascularization Investigation 2 Diabetes). J Am Heart Assoc. 2017;6(7).

  66. Rasmussen LJH, Petersen JEV, Eugen-Olsen J. Soluble urokinase plasminogen activator receptor (suPAR) as a biomarker of systemic chronic inflammation. Front Immunol. 2021;12:780641.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Thuno M, Macho B, Eugen-Olsen J. suPAR: the molecular crystal ball. Dis Markers. 2009;27(3):157–72.

    PubMed  PubMed Central  Google Scholar 

  68. Hindy G, Tyrrell DJ, Vasbinder A, Wei C, Presswalla F, Wang H, et al. Increased soluble urokinase plasminogen activator levels modulate monocyte function to promote atherosclerosis. J Clin Invest. 2022;132(24).

  69. Fuhrman B. The urokinase system in the pathogenesis of atherosclerosis. Atherosclerosis. 2012;222(1):8–14.

    CAS  PubMed  Google Scholar 

  70. Mehta A, Desai SR, Ko YA, Liu C, Dhindsa DS, Nayak A, et al. Sex differences in circulating soluble urokinase-type plasminogen activator receptor (suPAR) levels and adverse outcomes in coronary artery disease. J Am Heart Assoc. 2020;9(5):e015457.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Eapen DJ, Manocha P, Ghasemzadeh N, Patel RS, Al Kassem H, Hammadah M, et al. Soluble urokinase plasminogen activator receptor level is an independent predictor of the presence and severity of coronary artery disease and of future adverse events. J Am Heart Assoc. 2014;3(5):e001118.

    PubMed  PubMed Central  Google Scholar 

  72. Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, et al. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation. 2003;107(12):1579–85.

    CAS  PubMed  Google Scholar 

  73. Zhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA. 2001;286(17):2136–42.

    CAS  PubMed  Google Scholar 

  74. Tang WH, Wu Y, Nicholls SJ, Hazen SL. Plasma myeloperoxidase predicts incident cardiovascular risks in stable patients undergoing medical management for coronary artery disease. Clin Chem. 2011;57(1):33–9.

    CAS  PubMed  Google Scholar 

  75. Bini A, Fenoglio JJ, Mesa-Tejada R, Kudryk B, Kaplan KL. Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis. Use of monoclonal antibodies. Arteriosclerosis. 1989;9(1):109–21.

    CAS  PubMed  Google Scholar 

  76. Desai SR, Dhindsa DS, Ko YA, Sandesara PB, Mehta A, Liu C, et al. Aggregate clinical and biomarker-based model predicts adverse outcomes in patients with coronary artery disease. Am J Cardiol. 2023;203:315–24.

    CAS  PubMed  Google Scholar 

  77. Fowkes FG, Lowe GD, Housley E, Rattray A, Rumley A, Elton RA, et al. Cross-linked fibrin degradation products, progression of peripheral arterial disease, and risk of coronary heart disease. Lancet. 1993;342(8863):84–6.

    CAS  PubMed  Google Scholar 

  78. Saunders JT, Nambi V, de Lemos JA, Chambless LE, Virani SS, Boerwinkle E, et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the atherosclerosis risk in communities study. Circulation. 2011;123(13):1367–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Everett BM, Brooks MM, Vlachos HE, Chaitman BR, Frye RL, Bhatt DL, et al. Troponin and cardiac events in stable ischemic heart disease and diabetes. N Engl J Med. 2015;373(7):610–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lindholm D, Lindback J, Armstrong PW, Budaj A, Cannon CP, Granger CB, et al. Biomarker-based risk model to predict cardiovascular mortality in patients with stable coronary disease. J Am Coll Cardiol. 2017;70(7):813–26.

    PubMed  Google Scholar 

  81. Latini R, Masson S, Anand IS, Missov E, Carlson M, Vago T, et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation. 2007;116(11):1242–9.

    CAS  PubMed  Google Scholar 

  82. Hammadah M, Kim JH, Tahhan AS, Kindya B, Liu C, Ko YA, et al. Use of high-sensitivity cardiac troponin for the exclusion of inducible myocardial ischemia: a cohort study. Ann Intern Med. 2018;169(11):751–60.

    PubMed  PubMed Central  Google Scholar 

  83. Samman Tahhan A, Sandesara P, Hayek SS, Hammadah M, Alkhoder A, Kelli HM, et al. High-sensitivity troponin I levels and coronary artery disease severity, progression, and long-term outcomes. J Am Heart Assoc. 2018;7(5).

  84. Weber M, Hamm C. Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart. 2006;92(6):843–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bibbins-Domingo K, Gupta R, Na B, Wu AH, Schiller NB, Whooley MA. N-terminal fragment of the prohormone brain-type natriuretic peptide (NT-proBNP), cardiovascular events, and mortality in patients with stable coronary heart disease. JAMA. 2007;297(2):169–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Omland T, Sabatine MS, Jablonski KA, Rice MM, Hsia J, Wergeland R, et al. Prognostic value of B-type natriuretic peptides in patients with stable coronary artery disease: the PEACE Trial. J Am Coll Cardiol. 2007;50(3):205–14.

    CAS  PubMed  Google Scholar 

  87. Schnabel R, Rupprecht HJ, Lackner KJ, Lubos E, Bickel C, Meyer J, et al. Analysis of N-terminal-pro-brain natriuretic peptide and C-reactive protein for risk stratification in stable and unstable coronary artery disease: results from the AtheroGene study. Eur Heart J. 2005;26(3):241–9.

    CAS  PubMed  Google Scholar 

  88. Li Y, Ding Y, Zhao Y, Gui Y, Shen Y, Xiang Q. Prognostic value of soluble urokinase-type plasminogen activator receptor in coronary artery disease: a meta-analysis. Eur J Clin Invest. 2022;52(12):e13867.

    PubMed  PubMed Central  Google Scholar 

  89. Rorth R, Jhund PS, Yilmaz MB, Kristensen SL, Welsh P, Desai AS, et al. Comparison of BNP and NT-proBNP in patients with heart failure and reduced ejection fraction. Circ Heart Fail. 2020;13(2):e006541.

    CAS  PubMed  Google Scholar 

  90. Morrow DA. Cardiovascular risk prediction in patients with stable and unstable coronary heart disease. Circulation. 2010;121(24):2681–91.

    PubMed  Google Scholar 

  91. Schnabel RB, Schulz A, Messow CM, Lubos E, Wild PS, Zeller T, et al. Multiple marker approach to risk stratification in patients with stable coronary artery disease. Eur Heart J. 2010;31(24):3024–31.

    CAS  PubMed  Google Scholar 

  92. Goliasch G, Kleber ME, Richter B, Plischke M, Hoke M, Haschemi A, et al. Routinely available biomarkers improve prediction of long-term mortality in stable coronary artery disease: the Vienna and Ludwigshafen Coronary Artery Disease (VILCAD) risk score. Eur Heart J. 2012;33(18):2282–9.

    CAS  PubMed  Google Scholar 

  93. Joshi A, Mayr M. In Aptamers they trust: the caveats of the SOMAscan biomarker discovery platform from somaLogic. Circulation. 2018;138(22):2482–5.

    PubMed  PubMed Central  Google Scholar 

  94. Ganz P, Heidecker B, Hveem K, Jonasson C, Kato S, Segal MR, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. 2016;315(23):2532–41.

    CAS  PubMed  Google Scholar 

  95. Helgason H, Eiriksdottir T, Ulfarsson MO, Choudhary A, Lund SH, Ivarsdottir EV, et al. Evaluation of large-scale proteomics for prediction of cardiovascular events. JAMA. 2023;330(8):725–35.

    CAS  PubMed  Google Scholar 

  96. Nurmohamed NS, Belo Pereira JP, Hoogeveen RM, Kroon J, Kraaijenhof JM, Waissi F, et al. Targeted proteomics improves cardiovascular risk prediction in secondary prevention. Eur Heart J. 2022;43(16):1569–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kennon S, Price CP, Mills PG, Ranjadayalan K, Cooper J, Clarke H, et al. The effect of aspirin on C-reactive protein as a marker of risk in unstable angina. J Am Coll Cardiol. 2001;37(5):1266–70.

    CAS  PubMed  Google Scholar 

  98. Albert MA, Danielson E, Rifai N, Ridker PM, PRINCE Investigators. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA. 2001;286(1):64–70.

    CAS  PubMed  Google Scholar 

  99. Belalcazar LM, Reboussin DM, Haffner SM, Hoogeveen RC, Kriska AM, Schwenke DC, et al. A 1-year lifestyle intervention for weight loss in individuals with type 2 diabetes reduces high C-reactive protein levels and identifies metabolic predictors of change: from the Look AHEAD (Action for Health in Diabetes) study. Diabetes Care. 2010;33(11):2297–303.

    PubMed  PubMed Central  Google Scholar 

  100. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207.

    CAS  PubMed  Google Scholar 

  101. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.

    CAS  PubMed  Google Scholar 

  102. Ford I, Shah AS, Zhang R, McAllister DA, Strachan FE, Caslake M, et al. High-sensitivity cardiac troponin, statin therapy, and risk of coronary heart disease. J Am Coll Cardiol. 2016;68(25):2719–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Pufulete M, Maishman R, Dabner L, Higgins JPT, Rogers CA, Dayer M, et al. B-type natriuretic peptide-guided therapy for heart failure (HF): a systematic review and meta-analysis of individual participant data (IPD) and aggregate data. Syst Rev. 2018;7(1):112.

    PubMed  PubMed Central  Google Scholar 

  104. Pufulete M, Maishman R, Dabner L, Mohiuddin S, Hollingworth W, Rogers CA, et al. Effectiveness and cost-effectiveness of serum B-type natriuretic peptide testing and monitoring in patients with heart failure in primary and secondary care: an evidence synthesis, cohort study and cost-effectiveness model. Health Technol Assess. 2017;21(40):1–150.

    PubMed  PubMed Central  Google Scholar 

  105. Karlstrom P, Alehagen U, Boman K, Dahlstrom U, UPSTEP‐Study Group. Brain natriuretic peptide-guided treatment does not improve morbidity and mortality in extensively treated patients with chronic heart failure: responders to treatment have a significantly better outcome. Eur J Heart Fail. 2011;13(10):1096–103.

    PubMed  Google Scholar 

  106. Alehagen U, Lindstedt G, Eriksson H, Dahlstrom U. Utility of the amino-terminal fragment of pro-brain natriuretic peptide in plasma for the evaluation of cardiac dysfunction in elderly patients in primary health care. Clin Chem. 2003;49(8):1337–46.

    CAS  PubMed  Google Scholar 

  107. Troughton RW, Frampton CM, Brunner-La Rocca HP, Pfisterer M, Eurlings LW, Erntell H, et al. Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: an individual patient meta-analysis. Eur Heart J. 2014;35(23):1559–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ledwidge M, Gallagher J, Conlon C, Tallon E, O’Connell E, Dawkins I, et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA. 2013;310(1):66–74.

    CAS  PubMed  Google Scholar 

  109. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97.

    CAS  PubMed  Google Scholar 

  110. Emory U. The Precision CAD Trial 2028 [updated December. Available from: https://classic.clinicaltrials.gov/show/NCT04755413.

  111. Intermountain Health Care I, SomaLogic I. Evaluating the impact of SomaSignal tests on medical management and change in risk in patients at higher risk of cardiovascular disease: a feasibility and an adaptive implementation study 2024 [updated August 12. Available from: https://classic.clinicaltrials.gov/show/NCT04836117.

  112. Qure Healthcare LLC, SomaLogic I. Clinical Utility Trial for the SomaLogic CVD-T2D Test 2022 [updated August 15. Available from: https://classic.clinicaltrials.gov/show/NCT05237271.

  113. University Hospitals Cleveland Medical Center, SomaLogic I. Pragmatic impact of proteomic risk stratification in diabetes mellitus 2023 [updated March 31. Available from: https://classic.clinicaltrials.gov/show/NCT05182359.

  114. Kodeboina M, Piayda K, Jenniskens I, Vyas P, Chen S, Pesigan RJ, et al. Challenges and burdens in the coronary artery disease care pathway for patients undergoing percutaneous coronary intervention: a contemporary narrative review. Int J Environ Res Public Health. 2023;20(9).

  115. Fitchett DH, Leiter LA, Lin P, Pickering J, Welsh R, Stone J, et al. Update to evidence-based secondary prevention strategies after acute coronary syndrome. CJC Open. 2020;2(5):402–15.

    PubMed  PubMed Central  Google Scholar 

  116. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596–646.

    PubMed  PubMed Central  Google Scholar 

  117. Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838–47.

    CAS  PubMed  Google Scholar 

  118. U.S. FDA approves first anti-inflammatory drug for cardiovascular disease. Agepha Pharma US. [press release]. Website, June 20, 2023 2023.

  119. Opstal TSJ, Fiolet ATL, van Broekhoven A, Mosterd A, Eikelboom JW, Nidorf SM, et al. Colchicine in patients with chronic coronary disease in relation to prior acute coronary syndrome. J Am Coll Cardiol. 2021;78(9):859–66.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MG wrote and edited the manuscript and tables EW and DP contributed to the manuscript text RI prepared the tables AQ edited the manuscript and tables

Corresponding author

Correspondence to Arshed A. Quyyumi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gold, M.E., Woods, E., Pobee, D. et al. Multi-proteomic Biomarker Risk Scores for Predicting Risk and Guiding Therapy in Patients with Coronary Artery Disease. Curr Cardiol Rep 25, 1811–1821 (2023). https://doi.org/10.1007/s11886-023-01995-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01995-3

Keywords

Navigation