Skip to main content

Advertisement

Log in

Challenges in Cardiovascular Imaging in Women with Breast Cancer

  • Women and Cardiovascular Health (N Goldberg and S Lewis, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Cardiovascular imaging in breast cancer patients is paramount for the surveillance of cancer therapy-related cardiac dysfunction (CTRCD); however, it comes with specific limitations.

Purpose of Review

This review aims to describe the unique challenges faced in cardiovascular imaging of breast cancer patients, discuss evidence to support the utility of various imaging modalities, and provide solutions for improvement in imaging this unique population.

Recent Findings

Updated clinical society guidelines have introduced more unifying surveillance of CTRCD, although there remains a lack of a universally accepted definition. Traditional and novel multi-modality imaging can be used to detect CTRCD and myocarditis in breast cancer patients.

Summary

Cardiovascular imaging in breast cancer patients is difficult due to reconstructive surgery. Although echocardiography with myocardial strain is the cornerstone, multi-modality imaging can be used to evaluate for CTRCD and myocarditis. Novel imaging techniques to improve the diagnosis of cardiotoxicities in breast cancer patients are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast cancer statistics, 2022. CA Cancer J Clin. 2022;72(6):524–41.

    Article  PubMed  Google Scholar 

  2. Abdel-Qadir H, Austin PC, Lee DS, Amir E, Tu JV, Thavendiranathan P, et al. A population-based study of cardiovascular mortality following early-stage breast cancer. JAMA Cardiol. 2017;2(1):88–93.

    Article  PubMed  Google Scholar 

  3. CDC WONDER Database. Multiple Cause of Death, 1999–2021. Available from: https://wonder.cdc.gov/mcd-icd10.html.

  4. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639.

    Article  PubMed  Google Scholar 

  5. Montisci A, Vietri MT, Palmieri V, Sala S, Donatelli F, Napoli C. Cardiac toxicity associated with cancer immunotherapy and biological drugs. Cancers (Basel). 2021;13(19).

  6. Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012;60(24):2504–12.

    Article  CAS  PubMed  Google Scholar 

  7. Florescu M, Cinteza M, Vinereanu D. Chemotherapy-induced cardiotoxicity. Maedica (Bucur). 2013;8(1):59–67.

    PubMed  Google Scholar 

  8. Jiji RS, Kramer CM, Salerno M. Non-invasive imaging and monitoring cardiotoxicity of cancer therapeutic drugs. J Nucl Cardiol. 2012;19(2):377–88.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    Article  CAS  PubMed  Google Scholar 

  10. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.

    Article  CAS  PubMed  Google Scholar 

  11. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67.

    Article  CAS  PubMed  Google Scholar 

  12. Schmid P, Cortes J, Dent R, Pusztai L, McArthur H, Kümmel S, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N Engl J Med. 2022;386(6):556–67.

    Article  CAS  PubMed  Google Scholar 

  13. Oren O, Blankstein R, Bhatt DL. Addressing imaging pitfalls to reduce cardiovascular disease misdiagnosis in patients with breast cancer following reconstruction. JAMA Cardiol. 2022;7(2):123–5.

    Article  PubMed  Google Scholar 

  14. Pignatti M, Mantovani F, Bertelli L, Barbieri A, Pacchioni L, Loschi P, et al. Effects of silicone expanders and implants on echocardiographic image quality after breast reconstruction. Plast Reconstr Surg. 2013;132(2):271–8.

    Article  CAS  PubMed  Google Scholar 

  15. Schwartz RG, McKenzie WB, Alexander J, Sager P, D'Souza A, Manatunga A, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med. 1987;82(6):1109–18.

  16. Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215–21.

    Article  CAS  PubMed  Google Scholar 

  17. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–93.

    Article  PubMed  PubMed Central  Google Scholar 

  18. •• Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229–361. The ESC guideline written in collaboration with other clinical societies serves as the most contemporary and comphrensive guide for the diagnosis, management, and surivellance of CTRCD at the time of the current review article.

  19. Stone JR, Kanneganti R, Abbasi M, Akhtari M. Monitoring for chemotherapy-related cardiotoxicity in the form of left ventricular systolic dysfunction: a review of current recommendations. JCO Oncol Pract. 2021;17(5):228–36.

    Article  PubMed  Google Scholar 

  20. Horacek JM, Jakl M, Horackova J, Pudil R, Jebavy L, Maly J. Assessment of anthracycline-induced cardiotoxicity with electrocardiography. Exp Oncol. 2009;31(2):115–7.

    CAS  PubMed  Google Scholar 

  21. Yu C, Pathan F, Tan TC, Negishi K. The Utility of advanced cardiovascular imaging in cancer patients-When, why, how, and the latest developments. Front Cardiovasc Med. 2021;8: 728215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fraser AG, Monaghan MJ, van der Steen AFW, Sutherland GR. A concise history of echocardiography: timeline, pioneers, and landmark publications. Eur Heart J Cardiovasc Imaging. 2022;23(9):1130–43.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maleki M, Esmaeilzadeh M. The evolutionary development of echocardiography. Iran J Med Sci. 2012;37(4):222–32.

    PubMed  PubMed Central  Google Scholar 

  24. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63(25 Pt A):2751–68.

  25. Rosmini S, Aggarwal A, Chen DH, Conibear J, Davies CL, Dey AK, et al. Cardiac computed tomography in cardio-oncology: an update on recent clinical applications. Eur Heart J Cardiovasc Imaging. 2021;22(4):397–405.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mitra D, Basu S. Equilibrium radionuclide angiocardiography: its usefulness in current practice and potential future applications. World J Radiol. 2012;4(10):421–30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. D’Amore C, Gargiulo P, Paolillo S, Pellegrino AM, Formisano T, Mariniello A, et al. Nuclear imaging in detection and monitoring of cardiotoxicity. World J Radiol. 2014;6(7):486–92.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nousiainen T, Jantunen E, Vanninen E, Hartikainen J. Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br J Cancer. 2002;86(11):1697–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79.

    Article  CAS  PubMed  Google Scholar 

  30. Makis W. MUGA image artefacts caused by metallic injection ports in breast reconstruction tissue expanders: a report of two breast cancer patients. BJR Case Rep. 2016;2(3):20150421.

    PubMed  PubMed Central  Google Scholar 

  31. Pinamonti B, Abate E, De Luca A, Finocchiaro G, Korcova R. Role of Cardiac Imaging: Echocardiography. In: Sinagra G, Merlo M, Pinamonti B, editors. Dilated Cardiomyopathy: From Genetics to Clinical Management. Cham (CH): Springer Copyright 2019, The Author(s). 2019. p. 83–111.

  32. Esmaeilzadeh M, Urzua Fresno CM, Somerset E, Shalmon T, Amir E, Fan CS, et al. A combined echocardiography approach for the diagnosis of cancer therapy-related cardiac dysfunction in women with early-stage breast cancer. JAMA Cardiol. 2022;7(3):330–40.

    Article  PubMed  PubMed Central  Google Scholar 

  33. McKillop JH, Bristow MR, Goris ML, Billingham ME, Bockemuehl K. Sensitivity and specificity of radionuclide ejection fractions in doxorubicin cardiotoxicity. Am Heart J. 1983;106(5 Pt 1):1048–56.

    Article  CAS  PubMed  Google Scholar 

  34. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popović ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61(1):77–84.

    Article  PubMed  Google Scholar 

  35. Movahed MR. Interference of breast implants with echocardiographic image acquisition and interpretation. Cardiovasc Ultrasound. 2007;5:9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Larsson MK, Da Silva C, Gunyeli E, Ilami AA, Szummer K, Winter R, et al. The potential clinical value of contrast-enhanced echocardiography beyond current recommendations. Cardiovasc Ultrasound. 2016;14:2.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liang S, Liu M, Liu Z, Zhong X, Qin Y, Liang T, et al. Global longitudinal strain assessment in contrast-enhanced echocardiography in breast cancer patients: a feasibility study. Cardiovasc Ultrasound. 2023;21(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57(22):2263–70.

    Article  CAS  PubMed  Google Scholar 

  39. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107(9):1375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr. 2013;26(5):493–8.

    Article  PubMed  Google Scholar 

  42. Ye L, Yang ZG, Selvanayagam JB, Luo H, Yang TZ, Perry R, et al. Myocardial strain imaging by echocardiography for the prediction of cardiotoxicity in chemotherapy-treated patients: a meta-analysis. JACC Cardiovasc Imaging. 2020;13(3):881–2.

    Article  PubMed  Google Scholar 

  43. • Negishi T, Thavendiranathan P, Penicka M, Lemieux J, Murbraech K, Miyazaki S, et al. Cardioprotection using strain-guided management of potentially cardiotoxic cancer therapy: 3-year results of the SUCCOUR trial. JACC Cardiovasc Imaging. 2023;16(3):269–78. This randomized clinical trial compared the utility of GLS vs. LVEF surveillance in monitoring CTRCD. The trial showed that a GLS-based strategy for the detection and treatment of CTRCD was not superior to an LVEF-based strategy.

  44. Lightfoot JC, D’Agostino RB Jr, Hamilton CA, Jordan J, Torti FM, Kock ND, et al. Novel approach to early detection of doxorubicin cardiotoxicity by gadolinium-enhanced cardiovascular magnetic resonance imaging in an experimental model. Circ Cardiovasc Imaging. 2010;3(5):550–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tahir E, Azar M, Shihada S, Seiffert K, Goy Y, Beitzen-Heineke A, et al. Myocardial injury detected by T1 and T2 mapping on CMR predicts subsequent cancer therapy-related cardiac dysfunction in patients with breast cancer treated by epirubicin-based chemotherapy or left-sided RT. Eur Radiol. 2022;32(3):1853–65.

    Article  CAS  PubMed  Google Scholar 

  46. Burrage MK, Ferreira VM. The use of cardiovascular magnetic resonance as an early non-invasive biomarker for cardiotoxicity in cardio-oncology. Cardiovasc Diagn Ther. 2020;10(3):610–24.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Giusca S, Korosoglou G, Montenbruck M, Geršak B, Schwarz AK, Esch S, et al. Multiparametric early detection and prediction of cardiotoxicity using myocardial strain, T1 and T2 mapping, and biochemical markers: a longitudinal cardiac resonance imaging study during 2 years of follow-up. Circ Cardiovasc Imaging. 2021;14(6): e012459.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Marano AA, Henderson PW, Prince MR, Dashnaw SM, Rohde CH. Effect of MRI on breast tissue expanders and recommendations for safe use. J Plast Reconstr Aesthet Surg. 2017;70(12):1702–7.

    Article  PubMed  Google Scholar 

  49. Woolen SA, Shankar PR, Gagnier JJ, MacEachern MP, Singer L, Davenport MS. Risk of nephrogenic systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a group II gadolinium-based contrast agent: a systematic review and meta-analysis. JAMA Intern Med. 2020;180(2):223–30.

    Article  CAS  PubMed  Google Scholar 

  50. Feher A, Baldassarre LA, Sinusas AJ. Novel cardiac computed tomography methods for the assessment of anthracycline induced cardiotoxicity. Front Cardiovasc Med. 2022;9: 875150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Egashira K, Sueta D, Tomiguchi M, Kidoh M, Oda S, Usuku H, et al. Cardiac computed tomography-derived extracellular volume fraction in late anthracycline-induced cardiotoxicity. Int J Cardiol Heart Vasc. 2021;34: 100797.

    PubMed  PubMed Central  Google Scholar 

  52. Wang R, Fang Z, Wang H, Schoepf UJ, Emrich T, Giovagnoli D, et al. Quantitative analysis of three-dimensional left ventricular global strain using coronary computed tomography angiography in patients with heart failure: comparison with 3T cardiac MR. Eur J Radiol. 2021;135: 109485.

    Article  PubMed  Google Scholar 

  53. Chadashvili T, Litmanovich D, Hall F, Slanetz PJ. Do breast arterial calcifications on mammography predict elevated risk of coronary artery disease? Eur J Radiol. 2016;85(6):1121–4.

    Article  PubMed  Google Scholar 

  54. Yoon YE, Kim KM, Han JS, Kang SH, Chun EJ, Ahn S, et al. Prediction of subclinical coronary artery disease with breast arterial calcification and low bone mass in asymptomatic women: Registry for the Women Health Cohort for the BBC Study. JACC Cardiovasc Imaging. 2019;12(7 Pt 1):1202–11.

    Article  PubMed  Google Scholar 

  55. Chuzi S, Rangarajan V, Jafari L, Vaitenas I, Akhter N. Subcostal view-based longitudinal strain in patients with breast cancer is an alternative to conventional apical view-based longitudinal strain. J Am Soc Echocardiogr. 2019;32(4):514-20.e1.

    Article  PubMed  Google Scholar 

  56. Zhao R, Shu F, Zhang C, Song F, Xu Y, Guo Y, et al. Early detection and prediction of anthracycline-induced right ventricular cardiotoxicity by 3-dimensional echocardiography. JACC CardioOncol. 2020;2(1):13–22.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801.

    Article  PubMed  Google Scholar 

  58. Timóteo AT, Moura Branco L, Filipe F, Galrinho A, Rio P, Portugal G, et al. Cardiotoxicity in breast cancer treatment: what about left ventricular diastolic function and left atrial function? Echocardiography. 2019;36(10):1806–13.

    Article  PubMed  Google Scholar 

  59. Chen N, Liu A, Sun S, Wei H, Sun Q, Shang Z, et al. Evaluation of left atrial function and mechanical dispersion in breast cancer patients after chemotherapy. Clin Cardiol. 2022;45(5):540–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hinrichs L, Mrotzek SM, Mincu RI, Pohl J, Röll A, Michel L, et al. Troponins and natriuretic peptides in cardio-oncology patients-data from the ECoR Registry. Front Pharmacol. 2020;11:740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Korte MA, de Vries EG, Lub-de Hooge MN, Jager PL, Gietema JA, van der Graaf WT, et al. 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer. 2007;43(14):2046–51.

    Article  PubMed  Google Scholar 

  62. Schwartz RG, Jain D, Storozynsky E. Traditional and novel methods to assess and prevent chemotherapy-related cardiac dysfunction noninvasively. J Nucl Cardiol. 2013;20(3):443–64.

    Article  PubMed  Google Scholar 

  63. Hong YJ, Kim GM, Han K, Kim PK, Lee SA, An E, et al. Cardiotoxicity evaluation using magnetic resonance imaging in breast Cancer patients (CareBest): study protocol for a prospective trial. BMC Cardiovasc Disord. 2020;20(1):264.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chen H, Ouyang D, Baykaner T, Jamal F, Cheng P, Rhee JW. Artificial intelligence applications in cardio-oncology: leveraging high dimensional cardiovascular data. Front Cardiovasc Med. 2022;9: 941148.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Salte IM, Østvik A, Smistad E, Melichova D, Nguyen TM, Karlsen S, et al. Artificial intelligence for automatic measurement of left ventricular strain in echocardiography. JACC Cardiovasc Imaging. 2021;14(10):1918–28.

    Article  PubMed  Google Scholar 

  66. Baratta SDM, Marchese M, Trucco J, Rizzo M, Bernok F. Serum markers, conventional Doppler echocardiography and two-dimensional systolic strain in the diagnosis of chemotherapy-induced myocardial toxicity. Rev Argent Cardiol. 2013;81(2):151–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nausheen Akhter.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ositelu, K., Trevino, A., Tong, A. et al. Challenges in Cardiovascular Imaging in Women with Breast Cancer. Curr Cardiol Rep 25, 1247–1255 (2023). https://doi.org/10.1007/s11886-023-01941-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01941-3

Keywords

Navigation