Skip to main content

Advertisement

Log in

The Promise and Illusion of Continuous, Cuffless Blood Pressure Monitoring

  • Hypertension (DS Geller and DL Cohen, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Blood pressure (BP) fluctuations outside of clinic are increasingly recognized for their role in the development of cardiovascular disease, syncope, and premature death and as a promising target for tailored hypertension treatment. However, current cuff-based BP devices, including home and ambulatory devices, are unable to capture the breadth of BP variability across human activities, experiences, and contexts.

Recent Findings

Cuffless, wearable BP devices offer the promise of beat-to-beat, continuous, noninvasive measurement of BP during both awake and sleep periods with minimal patient inconvenience. Importantly, cuffless BP devices can characterize BP variability, allowing for the identification of patient-specific triggers of BP surges in the home environment. Unfortunately, the pace of evidence, regulation, and validation testing has lagged behind the pace of innovation and direct consumer marketing.

Summary

We provide an overview of the available technologies and devices for cuffless BP monitoring, considerations for the calibration and validation of these devices, and the promise and pitfalls of the cuffless BP paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. O’Brien E, Fitzgerald D. The history of blood pressure measurement. J Hum Hypertens. 1994;8(2):73–84. https://www.ncbi.nlm.nih.gov/pubmed/8207743.

    CAS  PubMed  Google Scholar 

  2. Swales JD. A century of arterial hypertension. J R Soc Med. 1996;89(11):658.

    Article  PubMed Central  Google Scholar 

  3. Janeway TC. A clinical study of hypertensive cardiovascular disease. Arch Intern Med. 1913;12:755–8.

    Article  Google Scholar 

  4. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J 3rd. Factors of risk in the development of coronary heart disease–six year follow-up experience. The Framingham Study Ann Intern Med. 1961;55:33–50. https://doi.org/10.7326/0003-4819-55-1-33.

    Article  CAS  PubMed  Google Scholar 

  5. Treatment BPL, Trialists C. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis. Lancet. 2021;397(10285):1625–36. https://doi.org/10.1016/S0140-6736(21)00590-0.

    Article  Google Scholar 

  6. Group SR, Lewis CE, Fine LJ, Beddhu S, Cheung AK, Cushman WC, Cutler JA, Evans GW, Johnson KC, Kitzman DW, Oparil S, Rahman M, Reboussin DM, Rocco MV, Sink KM, Snyder JK, Whelton PK, Williamson JD, Wright JT Jr, Ambrosius WT. Final report of a trial of intensive versus standard blood-pressure control. N Engl J Med. 2021;384(20):1921–30. https://doi.org/10.1056/NEJMoa1901281.

    Article  Google Scholar 

  7. Johnson KC, Kostis WJ, Papademetriou V, Rahman M, Simmons DL, Taylor A, Whelton PK, Wright JT, Bhatt UY, Drawz PE. Effect of intensive and standard clinic‐based hypertension management on the concordance between clinic and ambulatory blood pressure and blood pressure variability in SPRINT. J Am Heart Assoc. 2019;8(14). https://doi.org/10.1161/jaha.118.011706

  8. Kuznetsova T, Stolarz K, Bianchi M, Richart T, Casiglia E, Malyutina S, Filipovsky J, Kawecka-Jaszcz K, Nikitin Y, Ohkubo T, Sandoya E, Investigators I. The International Database of Ambulatory Blood Pressure in relation to Cardiovascular Outcome (IDACO): protocol and research perspectives. Blood Press Monit. 2007;12(4):255–62. https://doi.org/10.1097/mbp.0b013e3280f813bc.

    Article  PubMed  Google Scholar 

  9. Cohen JB, Lotito MJ, Trivedi UK, Denker MG, Cohen DL, Townsend RR. Cardiovascular events and mortality in white coat hypertension. Ann Intern Med. 2019;170(12):853. https://doi.org/10.7326/m19-0223.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Palla M, Saber H, Konda S, Briasoulis A. Masked hypertension and cardiovascular outcomes: an updated systematic review and meta-analysis. Integrated Blood Pressure Control. 2018;11:11–24. https://doi.org/10.2147/ibpc.s128947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Niiranen TJ, Maki J, Puukka P, Karanko H, Jula AM. Office, home, and ambulatory blood pressures as predictors of cardiovascular risk. Hypertension. 2014;64(2):281–6. https://doi.org/10.1161/HYPERTENSIONAHA.114.03292.

    Article  CAS  PubMed  Google Scholar 

  12. Schwartz JE, Muntner P, Kronish IM, Burg MM, Pickering TG, Bigger JT, Shimbo D. Reliability of office, home, and ambulatory blood pressure measurements and correlation with left ventricular mass. J Am Coll Cardiol. 2020;76(25):2911–22. https://doi.org/10.1016/j.jacc.2020.10.039.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mancia G, Verdecchia P. Clinical value of ambulatory blood pressure: evidence and limits. Circ Res. 2015;116(6):1034–45. https://doi.org/10.1161/CIRCRESAHA.116.303755.

    Article  CAS  PubMed  Google Scholar 

  14. Kuwabara M, Harada K, Hishiki Y, Ohkubo T, Kario K, Imai Y. Validation of a wrist-type home nocturnal blood pressure monitor in the sitting and supine position according to the ANSI/AAMI/ISO81060-2:2013 guidelines: Omron HEM-9601T. The Journal of Clinical Hypertension. 2020;22(6):970–8. https://doi.org/10.1111/jch.13864.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leary AC, Murphy MB. Sleep disturbance during ambulatory blood pressure monitoring of hypertensive patients. Blood Press Monit. 1998;3(1):11–5. https://www.ncbi.nlm.nih.gov/pubmed/10212326.

    CAS  PubMed  Google Scholar 

  16. Tolonen H, Koponen P, Naska A, Männistö S, Broda G, Palosaari T, Kuulasmaa K. Challenges in standardization of blood pressure measurement at the population level. BMC Med Res Methodol. 2015;15:33. https://doi.org/10.1186/s12874-015-0020-3.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Elias MF, Goodell AL. Human errors in automated office blood pressure measurement. Hypertension. 2021;77:6–15. https://doi.org/10.1161/HYPERTENSIONAHA.120.16164.

    Article  CAS  PubMed  Google Scholar 

  18. Kario K. New insight of morning blood pressure surge into the triggers of cardiovascular disease-synergistic resonance of blood pressure variability. Am J Hypertens. 2016;29:14–6. https://doi.org/10.1093/ajh/hpv114.

    Article  PubMed  Google Scholar 

  19. Kario K. Evidence and perspectives on the 24-hour management of hypertension: hemodynamic biomarker-initiated ‘anticipation medicine’ for zero cardiovascular event. Prog Cardiovasc Dis. 2016;59:262–81. https://doi.org/10.1016/j.pcad.2016.04.001.

    Article  PubMed  Google Scholar 

  20. Julius S, Li Y, Brant D, Krause L, Buda AJ. Neurogenic pressor episodes fail to cause hypertension, but do induce cardiac hypertrophy. Hypertension. 1989;13(5):422–9.

    Article  CAS  PubMed  Google Scholar 

  21. Sabbahi A, Arena R, Kaminsky LA, Myers J, Phillips SA. Feb Peak blood pressure responses during maximum cardiopulmonary exercise testing: reference standards from FRIEND (Fitness Registry and the Importance of Exercise: a national database). Hypertension. 2018;71(2):229–36. https://doi.org/10.1161/HYPERTENSIONAHA.117.10116. Epub 18 Dec 2017. PMID: 29255072.

    Article  CAS  PubMed  Google Scholar 

  22. Assaf Y, Barout A, Alhamid A, Al-Mouakeh A, Barillas-Lara MI, Fortin-Gamero S, Bonikowske AR, Pepine CJ, Allison TG. Peak systolic blood pressure during the exercise test: reference values by sex and age and association with mortality. Hypertension. 2021;77(6):1906–14. https://doi.org/10.1161/hypertensionaha.120.16570.

    Article  CAS  PubMed  Google Scholar 

  23. Wieling W, Van Dijk N, Thijs RD, De Lange FJ, Krediet CTP, Halliwill JR. Physical countermeasures to increase orthostatic tolerance. J Intern Med. 2015;277(1):69–82. https://doi.org/10.1111/joim.12249.

    Article  CAS  PubMed  Google Scholar 

  24. Imholz BP, Wieling W, van Montfrans GA, Wesseling KH. Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res. 1998;38(3):605–16. https://doi.org/10.1016/s0008-6363(98)00067-4. PMID: 9747429.

  25. Kario K, Tomitani N, Fujiwara T, Okawara Y, Kanegae H, Hoshide S. Peak home blood pressure as an earlier and strong novel risk factor for stroke: the practitioner-based nationwide J-HOP study extended. Hypertens Res. 2023. https://doi.org/10.1038/s41440-023-01297-9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kario K. Management of hypertension in the digital era: small wearable monitoring devices for remote blood pressure monitoring. Hypertension. 2020;76:640–50. https://doi.org/10.1161/HYPERTENSIONAHA.120.14742.

    Article  CAS  PubMed  Google Scholar 

  27. Hu J-R, Martin G, Iyengar S, Kovell LC, Plante TB, Helmond NV, Dart RA, Brady TM, Turkson-Ocran R-AN, Juraschek SP. Validating cuffless continuous blood pressure monitoring devices. Cardiovascular Digital Health Journal. 2023;4(1):9–20. https://doi.org/10.1016/j.cvdhj.2023.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stergiou G, Brunstrom M, MacDonald T, Kyriakoulis KG, Bursztyn M, Khan N, Bakris G, Kollias A, Menti A, Muntner P, Orias M, Poulter N, Shimbo D, Williams B, Adeoye AM, Damasceno A, Korostovtseva L, Li Y, Muxfeldt E, Tomaszewski M. Bedtime dosing of antihypertensive medications: systematic review and consensus statement: International Society of Hypertension position paper endorsed by World Hypertension League and European Society of Hypertension. J Hypertens. 2022;40(10):1847–58. https://doi.org/10.1097/HJH.0000000000003240.

    Article  CAS  PubMed  Google Scholar 

  29. Oliver JJ, Webb DJ. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler Thromb Vasc Biol. 2003;23(4):554–66. https://doi.org/10.1161/01.ATV.0000060460.52916.D6.

    Article  CAS  PubMed  Google Scholar 

  30. Tamura T. Cuffless blood pressure monitors: principles, standards and approval for medical use. IEICE Transactions on Communications. 2021;104(6):580–6. https://doi.org/10.1587/transcom.2020HMI0002.

    Article  Google Scholar 

  31. Alexandre J, Tan K, Almeida TP, Sola J, Alpert BS, Shah J. Validation of the Aktiia blood pressure cuff for clinical use according to the ANSI/AAMI/ISO 81060–2:2013 protocol. Blood Press Monit. 2023;28(2):109–12. https://doi.org/10.1097/mbp.0000000000000639.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bradley CK, Shimbo D, Colburn DA, Pugliese DN, Padwal R, Sia SK, Anstey DE. Cuffless blood pressure devices. Am J Hypertens. 2022;35(5):380–7. https://doi.org/10.1093/ajh/hpac017.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sayer G, Piper G, Vorovich E, Raikhelkar J, Kim GH, Rodgers D, Shimbo D, Uriel N. Continuous monitoring of blood pressure using a wrist-worn cuffless device. Am J Hypertens. 2022;35(5):407–13. https://doi.org/10.1093/ajh/hpac020.

    Article  PubMed  Google Scholar 

  34. Guidance for Industry and Food and Drug Administration Staff. (2019). FDA. Maryland.

  35. • Stergiou GS, Avolio AP, Palatini P, Kyriakoulis KG, Schutte AE, Mieke S, Kollias A, Parati G, Asmar R, Pantazis N, Stamoulopoulos A, Asayama K, Castiglioni P, De La Sierra A, Hahn J-O, Kario K, McManus RJ, Myers M, Ohkubo T, Mukkamala R. European Society of Hypertension recommendations for the validation of cuffless blood pressure measuring devices: European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. Journal of Hypertension. 9900. https://journals.lww.com/jhypertension/Fulltext/9900/European_Society_of_Hypertension_recommendations.267.aspxThis ESH recommendation is the first of its kind to require a device maintain its accuracy in the intermediate to long term as a subject responds to antihypertensive medication, diurnal variation, and exercise as a testing condition.

  36. Nair D, Tan SY, Gan HW, Lim SF, Tan J, Zhu M, Gao H, Chua NH, Peh WL, Mak KH. The use of ambulatory tonometric radial arterial wave capture to measure ambulatory blood pressure: the validation of a novel wrist-bound device in adults. J Hum Hypertens. 2008;22(3):220–2. https://doi.org/10.1038/sj.jhh.1002306.

    Article  CAS  PubMed  Google Scholar 

  37. Babs Soller, P. A blood pressure study demonstrating equivalence of the ViSi Mobile® system and GE DINAMAPTM CARESCAPETM V100. 2019. https://cdn2.hubspot.net/hubfs/5599582/SoteraWireless-April2020/PDF/White-Paper-ViSi-Mobile-and-GE-Dinamap-Carescape-White-Paper-3.pdf

  38. Continuous Non-Invasive Blood Pressure. Sotera Digital Health. https://soteradigitalhealth.com/blog/continuous-non-invasive-blood-pressure. Accessed 12 Aug 2023.

  39. Nachman D, Gilan A, Goldstein N, Constantini K, Littman R, Eisenkraft A, et al. Twenty-four-hour ambulatory blood pressure measurement using a novel noninvasive, cuffless, wireless device. Am J Hypertens. 2021;34:1171–80. https://academic.oup.com/ajh/article/34/11/1171/6304850?login=false.

    PubMed  Google Scholar 

  40. Nachman D, Gepner Y, Goldstein N, Kabakov E, Ishay AB, Littman R, Azmon Y, Jaffe E, Eisenkraft A. Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device. Sci Rep. 2020;10(1). https://doi.org/10.1038/s41598-020-73172-3.

  41. Kachel E, Constantini K, Nachman D, Carasso S, Littman R, Eisenkraft A, et al. A pilot study of blood pressure monitoring after cardiac surgery using a wearable, non-invasive sensor. Front Med. 2021;8. Available from: https://www.frontiersin.org/articles/10.3389/fmed.2021.693926.

  42. Baruch MC, Kalantari K, Gerdt DW, et al. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure. BioMed Eng OnLine. 2014;13:96. https://doi.org/10.1186/1475-925X-13-96.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kwon Y, Stafford PL, Enfield K, Mazimba S, Baruch MC. Continuous noninvasive blood pressure monitoring of beat-by-beat blood pressure and heart rate using caretaker compared with invasive arterial catheter in the intensive care unit. J Cardiothorac Vasc Anesth. 2022;36(7):2012–21. https://doi.org/10.1053/j.jvca.2021.09.042.

    Article  PubMed  Google Scholar 

  44. Gratz I, Deal E, Spitz F, Baruch M, Allen IE, Seaman JE, et al. Continuous Non-invasive finger cuff CareTaker® comparable to invasive intra-arterial pressure in patients undergoing major intra-abdominal surgery. BMC Anesthesiol. 2017;17:48. https://doi.org/10.1186/s12871-017-0337-z.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gratz I, Baruch M, Allen IE, Seaman J, Takla M, McEniry B, et al. Validation of the next-generation caretaker continuous physiological monitor using invasive intra-arterial pressures in abdominal surgery patients. Med Res Arch. 2021;9(7). https://doi.org/10.18103/mra.v9i7.2482.

  46. Mukkamala R, Stergiou GS, Avolio AP. Cuffless blood pressure measurement. Annu Rev Biomed Eng. 2022;24:203–30. https://doi.org/10.1146/annurev-bioeng-110220-014644.

    Article  CAS  PubMed  Google Scholar 

  47. Padwal R. Cuffless blood pressure measurement: how did accuracy become an afterthought? Am J Hypertens. 2019;32(9):807–9. https://doi.org/10.1093/ajh/hpz070.

    Article  PubMed  Google Scholar 

  48. • Stergiou GS, Alpert B, Mieke S, Asmar R, Atkins N, Eckert S, Frick G, Friedman B, Graßl T, Ichikawa T, Ioannidis JP, Lacy P, McManus R, Murray A, Myers M, Palatini P, Parati G, Quinn D, Sarkis J, Shennan A, Usuda T, Wang J, Wu CO, O’Brien E. A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement. J Hypertens. 2018;36(3):472–8. https://doi.org/10.1097/HJH.0000000000001634. PMID: 29384983; PMCID: PMC5796427. This collaboration between the AAMI, ESH, and ISO resulted in a universal standard for the validation of BP measuring devices, including six scenarios: the static position test, the device position test, the treatment test, the awake/sleep test, the exercise test, and the recalibration test.

  49. Tan I, Gnanenthiran SR, Chan J, Kyriakoulis KG, Schlaich MP, Rodgers A, Stergiou GS, Schutte AE. Evaluation of the ability of a commercially available cuffless wearable device to track blood pressure changes. J Hypertens. 2023;41(6):1003–10. https://doi.org/10.1097/hjh.0000000000003428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mukkamala R, Shroff SG, Landry C, Kyriakoulis KG, Avolio AP, Stergiou GS. The Microsoft Research Aurora project: important findings on cuffless blood pressure measurement. Hypertension. 2023;80(3):534–40. https://doi.org/10.1161/HYPERTENSIONAHA.122.20410.

    Article  CAS  PubMed  Google Scholar 

  51. Bent B, Goldstein BA, Kibbe WA, Dunn JP. Investigating sources of inaccuracyin wearable optical heart rate sensors. Npj Digit Med. 2020;3:1–9.

    Article  Google Scholar 

  52. Shirbani F, Hui N, Tan I, Butlin M, Avolio AP. Effect of ambient lighting and skintone on estimation of heart rate and pulse transit time from video plethysmography. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:2642–2645.

  53. Saxena A, Minton D, Lee DC, Sui X, Fayad R, Lavie CJ, Blair SN. Protective role of resting heart rate on all-cause and cardiovascular disease mortality. Mayo Clin Proc. 2013;88(12):1420–6. https://doi.org/10.1016/j.mayocp.2013.09.011.

    Article  PubMed  Google Scholar 

  54. Ishizaka T, Takahara A, Iwasaki H, Mitsumori Y, Kise H, Nakamura Y, Sugiyama A. Cardiovascular effects of azelnidipine in comparison with those of amlodipine assessed in the halothane-anaesthetized dog. Basic Clin Pharmacol Toxicol. 2010;106(2):135–43. https://doi.org/10.1111/j.1742-7843.2009.00478.x.

    Article  CAS  PubMed  Google Scholar 

  55. Bostock Y, Hanley J, McGown D, Pinnock H, Padfield P, McKinstry B. The acceptability to patients and professionals of remote blood pressure monitoring using mobile phones. Primary Health Care Res Develop. 2009;10:299–308.

    Article  Google Scholar 

  56. Bakkar N-MZ, El-Yazbi AF, Zouein FA, Fares SA. Beat-to-beat blood pressure variability: an early predictor of disease and cardiovascular risk. J Hypertens. 2021;39(5):830–845.

  57. Rothwell PM. Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension. The Lancet. 2010;375(9718):938–48.

    Article  Google Scholar 

  58. Webb AJ, Mazzucco S, Li L, Rothwell PM. Prognostic significance of blood pressure variability on beat-to-beat monitoring after transient ischemic attack and stroke. Stroke. 2018;49(1):62–7.

    Article  PubMed  Google Scholar 

  59. Palatini P. Blood pressure behaviour during physical activity. Sports Med. 1988;5:353–74.

    Article  CAS  PubMed  Google Scholar 

  60. Cornelissen V, Verheyden B, Aubert A, Fagard R. Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. J Hum Hypertens. 2010;24(3):175–82.

    Article  CAS  PubMed  Google Scholar 

  61. Palatini P, Mos L, Munari L, et al. Blood pressure changes during heavy-resistance exercise. Journal of hypertension Supplement: official journal of the International Society of Hypertension. 1989;7(6):S72–3.

    Article  CAS  PubMed  Google Scholar 

  62. Hedman K, Lindow T, Elmberg V, Brudin L, Ekström M. Age-and gender-specific upper limits and reference equations for workload-indexed systolic blood pressure response during bicycle ergometry. Eur J Prev Cardiol. 2021;28(12):1360–9.

    Article  PubMed  Google Scholar 

  63. Kario K. Orthostatic hypertension a measure of blood pressure variation for predicting cardiovascular risk. Circ J. 2009;73(6):1002–7.

    Article  PubMed  Google Scholar 

  64. Spatz ES, Martinez-Brockman JL, Tessier-Sherman B, et al. Phenotypes of hypertensive ambulatory blood pressure patterns: design and rationale of the ECHORN Hypertension Study. Ethn Dis. 2019;29(4):535.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Compagnat M, Mandigout S, Batcho C, et al. Validity of wearable actimeter computation of total energy expenditure during walking in post-stroke individuals. Ann Phys Rehabil Med. 2020;63(3):209–15.

    Article  CAS  PubMed  Google Scholar 

  66. Keyes A, Woerwag-Mehta S, Bartholdy S, et al. Physical activity and the drive to exercise in anorexia nervosa. Int J Eat Disord. 2015;48(1):46–54.

    Article  PubMed  Google Scholar 

  67. Natale P, Ni JY, Martinez-Martin D, et al. Perspectives and experiences of self-monitoring of blood pressure among patients with hypertension: a systematic review of qualitative studies. Am J Hypertens. 2023;hpad021. https://doi.org/10.1093/ajh/hpad021. Epub ahead of print. PMID: 36840919.

  68. Grace SL, Taherzadeh G, Jae Chang IS, Boger J, Arcelus A, Mak S, Chessex C, Mihailidis A. Perceptions of seniors with heart failure regarding autonomous zero-effort monitoring of physiological parameters in the smart-home environment. Heart Lung. 2017;46:313–9.

    Article  PubMed  Google Scholar 

  69. Tompson AC, Schwartz CL, Fleming S, Ward AM, Greenfield SM, Grant S, Hobbs FR, Heneghan CJ, McManus RJ. Patient experience of home and waiting room blood pressure measurement: a qualitative study of patients with recently diagnosed hypertension. Br J Gen Pract. 2018;68:e835–43.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bengtsson U, Kasperowski D, Ring L, Kjellgren K. Developing an interactive mobile phone self-report system for self-management of hypertension. Part 1: patient and professional perspectives. Blood Press. 2014;23:288–295.

  71. Abdullah A, Othman S. The influence of self-owned home blood pressure monitoring (HBPM) on primary care patients with hypertension: a qualitative study. BMC Fam Pract. 2011;12:143.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Knorr K, Aspinall D, Wolters M. On the privacy, security and safety of blood pressure and diabetes apps. https://groups.inf.ed.ac.uk/security/appguarden/papers/healthapp-sec.pdf

  73. Al-Rousan T, Pesantes MA, Dadabhai S, Kandula NR, Huffman MD, Miranda JJ, Vidal-Perez R, Dzudie A, Anderson CAM. Patients’ perceptions of self-management of high blood pressure in three low- and middle-income countries: findings from the BPMONITOR study. Glob Health Epidemiol Genom. 2020;5: e4.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Timothy Plante (U. Vermont) for his contributions toward the conceptualization of the file card thought experiment.

Funding

Dr. Juraschek was supported by NIH grants 5R01HL158622-03 and K23HL135273-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Juraschek.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, JR., Park, D.Y., Agarwal, N. et al. The Promise and Illusion of Continuous, Cuffless Blood Pressure Monitoring. Curr Cardiol Rep 25, 1139–1149 (2023). https://doi.org/10.1007/s11886-023-01932-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01932-4

Keywords

Navigation