Skip to main content

Advertisement

Log in

The Dicrotic Notch: Mechanisms, Characteristics, and Clinical Correlations

  • Interventional Cardiology (SR Bailey and T Helmy, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The dicrotic notch (DN) has long been considered a marker of arterial stiffness and compliance. Herein, we explored the recent developments in vascular medicine research in an attempt to assess the DN utility in clinical cardiovascular medicine.

Recent Findings.

Since its discovery, several studies have attempted to measure the changes in different parameters of the DN in physiological and pathological states. Despite the significance of their findings, the clinical role of the DN remained limited. This may have been related to the difficulty of measuring the DN via indwelling arterial catheters in the past. However, over the past two decades, several non-invasive methods have been developed, which may re-ignite interest in DN research.

Summary

The DN may have broader applications in clinical cardiovascular medicine. Further research is needed to establish the accuracy of DN non-invasive measurement methods and compare its prognostic value to other circulatory parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Klein LW, Shahrrava A. The incisura. Cardiol Rev. 2019;27:274–8.

    Article  PubMed  Google Scholar 

  2. Dawber TR, Thomas HEJ, McNamara PM. Characteristics of the dicrotic notch of the arterial pulse wave in coronary heart disease. Angiology. 1973;24:244–55.

    Article  CAS  PubMed  Google Scholar 

  3. • Lax H, Feinberg AW, Cohen BM. Studies of the arterial pulse wave: I. The normal pulse wave and its modification in the presence of human arteriosclerosis. J Chronic Dis. 1956;3:618–31. This paper is the earliest to show the impact of atherosclerosis on the arterial wave pulse, highlighting the diminution of the dicrotic wave, using both intra- and extra-arterial recordings.

  4. • Feinberg AW, Lax H, Urban W. Studies of the arterial pulse wave. Circulation. 1958;18:1125–30. This early paper investigates the different effects of epinephrine and norepinephrine on the arterial wave pulse in normotensive subjects with transient induced hypertension.

    Article  CAS  PubMed  Google Scholar 

  5. Hao Y, Cheng F, Pham M, Rein H, Patel D, Fang Y, et al. A noninvasive, economical, and instant-result method to diagnose and monitor type 2 diabetes using pulse wave: case-control study. JMIR mHealth uHealth. 2019;7: e11959.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brillante DG, O’sullivan AJ, Howes LG. Arterial stiffness indices in healthy volunteers using non invasive digital photoplethysmography. Blood Press. 2008;17:116–23.

    Article  PubMed  Google Scholar 

  7. Wang J-J, O’Brien AB, Shrive NG, Parker KH, Tyberg JV. Time-domain representation of ventricular-arterial coupling as a Windkessel and wave system. Am J Physiol Circ Physiol. 2003;284:H1358–68.

    Article  CAS  Google Scholar 

  8. • Hamilton WF. The patterns of the arterial pressure pulse. Am J Physiol Content. 1944;141:235–41. This paper is among the earliest to describe the different patterns of arterial pressure pulse in different arteries under different conditions in humans and animal models.

    Article  Google Scholar 

  9. Gamrah MA, Xu J, El Sawy A, Aguib H, Yacoub M, Parker KH. Mechanics of the dicrotic notch: an acceleration hypothesis. Proc Inst Mech Eng Part H, J Eng Med. 2020;234:1253–9.

    Article  Google Scholar 

  10. Parker KH. A brief history of arterial wave mechanics. Med Biol Eng Comput. 2009;47:111–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Westerhof N, Sipkema P, Bos GCVANDEN, Elzinga G. Forward and backward waves in the arterial system. Cardiovasc Res. 1972;6:648–56.

  12. Abel FL. Maximal negative dP/dt as an indicator of end of systole. Am J Physiol Circ Physiol. 1981;240:H676–9.

    Article  CAS  Google Scholar 

  13. Burkhoff D, Alexander J Jr, Schipke J. Assessment of Windkessel as a model of aortic input impedance. Am J Physiol Circ Physiol. 1988;255:H742–53.

    Article  CAS  Google Scholar 

  14. Lee NB, Park CG. Reproducibility of regional pulse wave velocity in healthy subjects. Korean J Intern Med. 2009;24:19–23.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shi P, Hu S, Zhu Y, Zheng J, Qiu Y, Cheang PYS. Insight into the dicrotic notch in photoplethysmographic pulses from the finger tip of young adults. J Med Eng Technol. 2009;33:628–33.

    Article  CAS  PubMed  Google Scholar 

  16. Weiss BM, Pasch T. Measurement of systemic arterial pressure. Curr Opin Anesthesiol. 1997;10:459–66.

    Article  Google Scholar 

  17. Pauca AL. Does radial artery pressure accurately reflect aortic pressure. Chest. 1992;102:1093–8.

    Article  Google Scholar 

  18. Hartmann V, Liu H, Chen F, Qiu Q, Hughes S, Zheng D. Quantitative comparison of photoplethysmographic waveform characteristics: effect of measurement site. Front Physiol. 2019;10:198.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schwid HA, Taylor LA, Smith NT. Computer model analysis of the radial artery pressure waveform. J Clin Monit. 1987;3:220–8.

    CAS  PubMed  Google Scholar 

  20. Chemla D, Hébert JL, Coirault C, Salmeron S, Zamani K, Lecarpentier Y. Matching dicrotic notch and mean pulmonary artery pressures: implications for effective arterial elastance. Am J Physiol. 1996;271:H1287–95.

    CAS  PubMed  Google Scholar 

  21. Hernando A, Pelaez-Coca MD, Lozano MT, Lazaro J, Gil E. Finger and forehead PPG signal comparison for respiratory rate estimation. Physiol Meas. 2019;40:95007.

    Article  CAS  Google Scholar 

  22. Hébert JL, Lecarpentier Y, Zamani K, Coirault C, Daccache G, Chemla D. Relation between aortic dicrotic notch pressure and mean aortic pressure in adults. Am J Cardiol. 1995;76:301–6.

    Article  PubMed  Google Scholar 

  23. Weinberg PD, Habens F, Kengatharan M, Barnes SE, Matz J, Anggård EE, et al. Characteristics of the pulse waveform during altered nitric oxide synthesis in the rabbit. Br J Pharmacol. 2001;133:361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klemsdal TO, Moan A, Kjeldsen SE. Effects of selective angiotensin II type 1 receptor blockade with losartan on arterial compliance in patients with mild essential hypertension. Blood Press. 1999;8:214–9.

    Article  CAS  PubMed  Google Scholar 

  25. Xu L, Yao Y, Wang H, He D, Wang L, Jiang Y. Morphology variability of radial pulse wave during exercise. Biomed Mater Eng. 2014;24:3605–11.

    PubMed  Google Scholar 

  26. Wang A, Yang L, Liu C, Cui J, Li Y, Yang X, et al. Athletic differences in the characteristics of the photoplethysmographic pulse shape: effect of maximal oxygen uptake and maximal muscular voluntary contraction. Biomed Res Int. 2015;2015: 752570.

    PubMed  PubMed Central  Google Scholar 

  27. Wang A-R, Su J, Zhang S, Yang L. Radial pulse waveform and parameters in different types of athletes. Am J Transl Res. 2016;8:1180–9.

    PubMed  PubMed Central  Google Scholar 

  28. Polak JF, Alessi-Chinetti JM, Patel AR, Estes JM. Association of common carotid artery Doppler-determined dicrotic notch velocity with the left ventricular ejection fraction. J ultrasound Med. 2015;34:461–7.

    Article  PubMed  Google Scholar 

  29. • Wang A, Yang L, Wen W, Zhang S, Hao D, Khalid SG, et al. Quantification of radial arterial pulse characteristics change during exercise and recovery. J Physiol Sci. 2018;68:113–20. This paper showed a significant reduction in the dicrotic notch time in the radial arterial pulse with increasing intensity of exercise in healthy male and female subjects.

    Article  CAS  PubMed  Google Scholar 

  30. Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Manipulation of ascending aortic pressure and flow wave reflections with the Valsalva maneuver: relationship to input impedance. Circulation. 1981;63:122–32.

    Article  CAS  PubMed  Google Scholar 

  31. Blumenthal HT, Lansing AI, Gray SH. The interrelation of elastic tissue and calcium in the genesis of arteriosclerosis. Am J Pathol. 1950;26:989.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Velican C. Role of the elastic tissue in the pathogenesis of atherosclerosis. Stud Cercet Med Interna. 1971;12:497–509.

    CAS  PubMed  Google Scholar 

  33. Seligman M, Eilberg RG, Fishman L. Mineralization of elastin extracted from human aortic tissues. Calcif Tissue Res. 1975;17:229–34.

    Article  CAS  PubMed  Google Scholar 

  34. Hirschfeld S, Liebman J, Borkat G, Bormuth C. Intracardiac pressure-sound correlates of echographic aortic valve closure. Circulation. 1977;55:602–4.

    Article  CAS  PubMed  Google Scholar 

  35. Anastassiades PC, Quinones MA, Gaasch WH, Adyanthaya AV, Waggoner AD, Alexander JK. Aortic valve closure: echocardiographic, phonocardiographic, and hemodynamic assessment. Am Heart J. 1976;91:228–32.

    Article  CAS  PubMed  Google Scholar 

  36. Safar ME. Pulse pressure, arterial stiffness, and cardiovascular risk. Curr Opin Cardiol. 2000;15:258–63.

    Article  CAS  PubMed  Google Scholar 

  37. Schiffrin EL. Vascular stiffening and arterial compliance: implications for systolic blood pressure. Am J Hypertens. 2004;17:39S-48S.

    Article  CAS  PubMed  Google Scholar 

  38. Lehmann ED, Hopkins KD, Rawesh A, Joseph RC, Kongola K, Coppack SW, et al. Relation between number of cardiovascular risk factors/events and noninvasive Doppler ultrasound assessments of aortic compliance. Hypertension. 1998;32:565–9.

    Article  CAS  PubMed  Google Scholar 

  39. Park J, Shin H. Vascular aging estimation based on artificial neural network using photoplethysmogram waveform decomposition: retrospective cohort study. JMIR Med Inform. 2022;10: e33439.

    Article  PubMed  PubMed Central  Google Scholar 

  40. • Kannel WB, Wolf PA, McGee DL, Dawber TR, McNamara P, Castelli WP. Systolic blood pressure, arterial rigidity, and risk of stroke. The Framingham study JAMA. 1981;245:1225–9. This analysis from the seminal Framingham study showed blunting of the dicrotic notch with isolated systolic hypertension, especially in elderly men.

    CAS  PubMed  Google Scholar 

  41. Sabbah HN, Stein PD. Valve origin of the aortic incisura. Am J Cardiol. 1978;41:32–8.

    Article  CAS  PubMed  Google Scholar 

  42. Convertino VA, Wirt MD, Glenn JF, Lein BC. The compensatory reserve for early and accurate prediction of hemodynamic compromise: a review of the underlying physiology. Shock. 2016;45:580–90.

    Article  PubMed  Google Scholar 

  43. Wasicek PJ, Teeter WA, Yang S, Hu P, Gamble WB, Galvagno SM, et al. Arterial waveform morphomics during hemorrhagic shock. Eur J Trauma Emerg Surg. 2021;47:325–32.

    Article  PubMed  Google Scholar 

  44. Hsieh SW, Hung KC. Atypical dicrotic notch in arterial blood pressure waveform morphology. J Clin Anesth. 2016:238–9.

  45. Murray WB, Foster PA. The peripheral pulse wave: information overlooked. J Clin Monit. 1996;12:365–77.

    Article  CAS  PubMed  Google Scholar 

  46. Coutrot M, Joachim J, Dépret F, Millasseau S, Nougué H, Matéo J, et al. Noninvasive continuous detection of arterial hypotension during induction of anaesthesia using a photoplethysmographic signal: proof of concept. Br J Anaesth. 2019;122:605–12.

    Article  PubMed  Google Scholar 

  47. Rafati M, Havaee E, Moladoust H, Sehhati M. Appraisal of different ultrasonography indices in patients with carotid artery atherosclerosis. EXCLI J. 2017;16:727.

    PubMed  PubMed Central  Google Scholar 

  48. Cooke ED, Bowcock SA, Trevor SA. Photoplethysmography of the distal pulp in the assessment of the vasospastic hand. Angiology. 1985;36:33–40.

    Article  CAS  PubMed  Google Scholar 

  49. Hoeksel SA, Jansen JR, Blom JA, Schreuder JJ. Detection of dicrotic notch in arterial pressure signals. J Clin Monit. 1997;13:309–16.

    Article  CAS  PubMed  Google Scholar 

  50. Rojo J, Bermejo J, Burwash I, Antoranz JC, Otto CM. The dicrotic notch and not the ventricular-aortic pressure crossover accounts for the end of ejection in aortic valve stenosis: implications for the invasive assessment of severity. Circulation. 2001;104:361–6.

    Google Scholar 

  51. Ahmad MM, Ullah R, Ahmad MN, Ammar Z, Shah S, Riaz A, et al. Distal dicrotic notch in the coronary artery pressure waveform predicts significant stenosis, as validated by fractional flow reserve, but performs inferiorly as compared to pd/pa. J Am Coll Cardiol. 2016;67:317.

    Article  Google Scholar 

  52. Donelli A, Jansen JRC, Hoeksel B, Pedeferri P, Hanania R, Bovelander J, et al. Performance of a real-time dicrotic notch detection and prediction algorithm in arrhythmic human aortic pressure signals. J Clin Monit Comput. 2002;17:181–5.

    Article  PubMed  Google Scholar 

  53. Zambrana-Vinaroz D, Vicente-Samper JM, G Juan C, Esteve-Sala V, Sabater-Navarro JM. Non-invasive device for blood pressure wave acquisition by means of mechanical transducer. Sensors (Basel). 2019;19.

  54. Martina JR, Westerhof BE, de Jonge N, van Goudoever J, Westers P, Chamuleau S, et al. Noninvasive arterial blood pressure waveforms in patients with continuous-flow left ventricular assist devices. ASAIO J. 2014;60:154–61.

    Article  PubMed  Google Scholar 

  55. Nara S, Kaur M, Verma KL. Novel notch detection algorithm for detection of dicrotic notch in PPG signals. Int J Comput Appl. 2014;86:36–9.

    Google Scholar 

  56. Singh O, Sunkaria RK. Detection of onset, systolic peak and dicrotic notch in arterial blood pressure pulses. Meas Control. 2017;50:170–6.

    Article  Google Scholar 

  57. Hermeling E, Reesink KD, Kornmann LM, Reneman RS, Hoeks AP. The dicrotic notch as alternative time-reference point to measure local pulse wave velocity in the carotid artery by means of ultrasonography. J Hypertens. 2009;27:2028–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir R. Kapadia.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abushouk, A., Kansara, T., Abdelfattah, O. et al. The Dicrotic Notch: Mechanisms, Characteristics, and Clinical Correlations. Curr Cardiol Rep 25, 807–816 (2023). https://doi.org/10.1007/s11886-023-01901-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01901-x

Keywords

Navigation