Skip to main content

Advertisement

Log in

Cardiovascular Toxicities Associated with Tyrosine Kinase Inhibitors

  • Cardio-Oncology (LA Baldassarre, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To provide a detailed overview of cardiovascular adverse events associated with the use of tyrosine kinase inhibitors across different tumor types.

Recent Findings

Despite an undeniable survival advantage of tyrosine kinase inhibitors (TKIs) in patients with hematologic or solid malignancies, the accompanying off-target cardiovascular adverse events can be life-threatening. In patients with B cell malignancies, the use of Bruton tyrosine kinase inhibitors has been associated with atrial and ventricular arrhythmias, as well as hypertension. Cardiovascular toxic profiles are heterogeneous among the several approved breakpoint cluster region (BCR)-ABL TKIS. Notably, imatinib might be cardioprotective. Vascular endothelial growth factor TKIs, constituting the central axis in the treatment of several solid tumors, including renal cell carcinoma and hepatocellular carcinoma, have strongly been associated with hypertension and arterial ischemic events. Epidermal growth factor TKIs as therapy for advanced non-small cell lung cancer (NSCLC) have been reported to be infrequently associated with heart failure and QT prolongation.

Summary

While tyrosine kinase inhibitors have been demonstrated to increase overall survival across different types of cancers, special consideration should be given to cardiovascular toxicities. High-risk patients can be identified by undergoing a comprehensive workup at baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •   Of importance •• Of major importance

  1. Du Z, Lovely CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018;17(1):58.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med. 2015;372(15):1430–40.

    Article  CAS  PubMed  Google Scholar 

  4. Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miklos D, Cutler CS, Arora M, et al. Ibrutinib for chronic graft-versus-host disease after failure of prior therapy. Blood. 2017;130(21):2243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O’Brian S, Jones JA, Coutre S, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17(10):1409–18.

    Article  Google Scholar 

  8. Sharman JP, Egyed M, Jurczak W, et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): a randomised, controlled, phase 3 trial. Lancet. 2020;395(10232):1278–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McMullen JR, Boey EJ, Ooi JY, et al. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood. 2014;124(25):3829–30.

    Article  CAS  PubMed  Google Scholar 

  10. Abbas HA, Wierda W. Acalabrutinib: a selective bruton tyrosine kinase inhibitor for the treatment of B-cell malignancies. Front Oncol. 2021;11: 668162.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiang L, Li L, Ruan Y, et al. Ibrutinib promotes atrial fibrillation by inducing structural remodeling and calcium dysregulation in the atrium. Heart Rhythm. 2019;16(9):1374–82.

    Article  PubMed  Google Scholar 

  12. • Xiao L, Salem JE, Clauss S, et al. Ibrutinib-mediated atrial fibrillation attributable to inhibition of C-terminal Src kinase. Circulation. 2020;142(25):2443–55. Findings from this study suggest that inhibition of the C-terminal Src kinase is an underlying mechanism for atrial fibrillation induced by imatinib.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pineda-Gayoso R, Alomar M, Lee DH, et al. Cardiovascular toxicities of Bruton’s tyrosine kinase inhibitors. Curr Treat Options Oncol. 2020;21(8):67.

    Article  PubMed  Google Scholar 

  14. Brown JR, Hillmen P, O’Brien S, et al. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia. 2018;32(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  15. Burger JA, Barr PM, Robak T, et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia. 2020;34(3):787–98.

    Article  CAS  PubMed  Google Scholar 

  16. Wiczer TE, Levine LB, Brumbaugh J, et al. Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib. Blood Adv. 2017;1(20):1739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Batiste F, Cautela J, Ancedy Y, et al. High incidence of atrial fibrillation in patients treated with ibrutinib. Open Heart. 2019;6(1):e001049.

    Article  Google Scholar 

  18. Byrd JC, Hillmen P, Ghia P, et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial. J Clin Oncol. 2021;39(31):3441–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown JR, Moslehi J, O’Brien S, et al. Characterization of atrial fibrillation adverse events reported in ibrutinib randomized controlled registration trials. Haematologica. 2017;102(10):1796–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reda G, Fattizzo B, Cassin R, et al. Predictors of atrial fibrillation in ibrutinib-treated CLL patients: a prospective study. J Hematol Oncol. 2018;11(1):79.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mato AR, Clasen S, Pickens P, et al. Left atrial abnormality (LAA) as a predictor of ibrutinib-associated atrial fibrillation in patients with chronic lymphocytic leukemia. Cancer Biol Ther. 2018;19(1):1–2.

    Article  PubMed  Google Scholar 

  22. Fradley MG, Gliksman M, Emole J, et al. Rates and risk of atrial arrhythmias in patients treated with ibrutinib compared with cytotoxic chemotherapy. Am J Cardiol. 2019;124(4):539–44.

    Article  PubMed  Google Scholar 

  23. D’Souza M, Carlson N, Fosbøl E, et al. CHA 2 DS 2-VASc score and risk of thromboembolism and bleeding in patients with atrial fibrillation and recent cancer. Eur J Prev Cardiol. 2018;25(6):651–8.

    Article  PubMed  Google Scholar 

  24. Lipsky A, Lamanna N. Hematology Am Soc Hematol Educ Program. 2020;2020(1):336–45.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang ML, Blum KA, Martin P, et al. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood. 2015;126(6):739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guha A, Derbala MH, Zhao Q, et al. Ventricular arrhythmias following ibrutinib initiation for lymphoid malignancies. J Am Coll Cardiol. 2018;72(6):697–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Salem JE, Manouchehri A, Bretagne M, et al. Cardiovascular toxicities associated with ibrutinib. J Am Coll Cardiol. 2019;74(13):1667–78.

    Article  CAS  PubMed  Google Scholar 

  28. O’Brien S, Hillmen P, Coutre S, et al. Safety analysis of four randomized controlled studies of ibrutinib in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma or mantle cell lymphoma. Clin Lymphoma Myeloma Leuk. 2018;18(10):648–57.

    Article  PubMed  Google Scholar 

  29. Dickerson T, Wiczer T, Waller A, et al. Hypertension and incident cardiovascular events following ibrutinib initiation. Blood. 2019;134(22):1919–28.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen ST, Azali L, Rosen L, et al. Hypertension and incident cardiovascular events after next-generation BTKi therapy initiation. J Hematol Oncol. 2022;15(1):92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. • Abdel-Qadir H, Sabrie N, Leong D, et al. Cardiovascular risk associated with ibrutinib use in chronic lymphocytic leukemia: a population-based cohort study. J Clin Oncol. 2021;39(31):3453–62. Findings from this real-world study suggest that ibrutinib is associated with high risks of atrial fibrillation, bleeding, and heart failure but not stroke or acute myocardial infarction.

    Article  CAS  PubMed  Google Scholar 

  32. Giles FJ, Mauro MJ, Hong F, et al. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia. 2013;27(6):1310–5.

    Article  CAS  PubMed  Google Scholar 

  33. Shah AM, Campbell P, Querejeta Rocha G, et al. Effect of imatinib as add-on therapy on echocardiographic measures of right ventricular function in patients with significant pulmonary arterial hypertension. Eur Heart J. 2015;36(10):623–32.

    Article  CAS  PubMed  Google Scholar 

  34. Gustafson D, Fish JE, Lipton JH, et al. Mechanisms of cardiovascular toxicity of BCR-ABL1 tyrosine kinase inhibitors in chronic myelogenous leukemia. Curr Hematol Malig Rep. 2020;15(1):20–30.

    Article  PubMed  Google Scholar 

  35. Trent JC, Patel SS, Zhang J, et al. Rare incidence of congestive heart failure in gastrointestinal stromal tumor and other sarcoma patients receiving imatinib mesylate. Cancer. 2010;116(1):184–92.

    CAS  PubMed  Google Scholar 

  36. Chintalgattu V, Patel SS, Khakoo AY, et al. Cardiovascular effects of tyrosine kinase inhibitors used for gastrointestinal stromal tumors. Hematol Oncol Clin North Am. 2009;23(1):97–107.

    Article  PubMed  Google Scholar 

  37. National Comprehensive Cancer Network: Chronic myeloid leukemia (Version 3.2022). 2022. https://www.nccn.org/professionals/physician_gls/pdf/cml.pdf.

  38. Guignabert C, Phan C, Seferian A, et al. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. J Clin Invest. 2016;126(9):3207–18.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Montani D, Bergot E, Günther S, et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation. 2012;125(17):2128–37.

    Article  CAS  PubMed  Google Scholar 

  40. Weatherald J, Chaumais M, Savale L, et al. Long-term outcomes of dasatinib-induced pulmonary arterial hypertension: a population-based study. Eur Respir J. 2017;50(1):1700217.

    Article  PubMed  Google Scholar 

  41. Baumgart B, Guha M, Hennan J, et al. In vitro and in vivo evaluation of dasatinib and imatinib on physiological parameters of pulmonary arterial hypertension. Cancer Chemother Pharmacol. 2017;79(4):711–23.

    Article  CAS  PubMed  Google Scholar 

  42. Shah NP, Kantarjian HM, Kim DW, et al. Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J Clin Oncol. 2008;26(19):3204–12.

    Article  CAS  PubMed  Google Scholar 

  43. •• Kantarjian HM, Hughes TP, Larson RA, et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia. 2021;35(2):440–53. Findings from this study suggest that nilotinib is associated with higher rates of ischemic heart disease, cerebrovascular events, and peripheral arterial disease than imatinib.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alhawiti N, Burbury KL, Kwa FA, et al. The tyrosine kinase inhibitor, nilotinib potentiates a prothrombotic state. Thromb Res. 2016;145:54–64.

    Article  CAS  PubMed  Google Scholar 

  45. Sadiq S, Owen E, Foster T, et al. Nilotinib-induced metabolic dysfunction: insights from a translational study using in vitro adipocyte models and patient cohorts. Leukemia. 2019;33(7):1810–4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kota V, Brümmendorf TH, Gambacorti-Passerini C, et al. Efficacy and safety following bosutinib dose reduction in patients with Philadelphia chromosome-positive leukemias. Leuk Res. 2021;111: 106690.

    Article  CAS  PubMed  Google Scholar 

  47. Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96.

    Article  CAS  PubMed  Google Scholar 

  48. Cortes JE, Kim DW, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132(4):393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cortes J, Apperley J, Lomaia E, et al. Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: a randomized, open-label phase 2 clinical trial. Blood. 2021;138(21):2042–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scemblix United States Prescribing Information. 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215358s000Orig1lbl.pdf.

  51. Réa D, Mauro M, Boquimpani C, et al. A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs bosutinib in CML after 2 or more prior TKIs. Blood. 2021;138(21):2031–41.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Briasoulis A, Chasouraki A, Sianis A, et al. Cardiotoxicity of non-anthracycline cancer chemotherapy agents. J Cardiovasc Dev Dis. 2022;9(3):66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guha A, Sayegh N, Agarwal N. Targeting cardiovascular adverse events of metastatic renal cell carcinoma therapies. JACC CardioOncol. 2022;4(2):235–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dobbin SJH, Petrie MC, Myles RC, et al. Cardiotoxic effects of angiogenesis inhibitors. Clin Sci (Lond). 2021;135(1):71–100.

    Article  CAS  PubMed  Google Scholar 

  55. Hamnvik OR, Choueiri TK, Turchin A, et al. Clinical risk factors for the development of hypertension in patients treated with inhibitors of the VEGF signaling pathway. Cancer. 2015;121(2):311–9.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu X, Stergiopoulos K, Wu S, et al. Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis. Acta Oncol. 2009;48(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  57. Liu B, Ding F, Yang Liu Y, et al. Incidence and risk of hypertension associated with vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: a comprehensive network meta-analysis of 72 randomized controlled trials involving 30013 patients. Oncotarget. 2016;7(41):67661–73.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378(9807):1931–9.

    Article  CAS  PubMed  Google Scholar 

  59. Qi WX, Lin F, Sun YJ, et al. Incidence and risk of hypertension with pazopanib in patients with cancer: a meta-analysis. Cancer Chemother Pharmacol. 2013;71(2):431–9.

    Article  CAS  PubMed  Google Scholar 

  60. Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res. 2001;49(3):568–81.

    Article  CAS  PubMed  Google Scholar 

  61. González-Pacheco FR, Deudero JJP, Castellanos MC, et al. Mechanisms of endothelial response to oxidative aggression: protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am J Physiol Heart Circ Physiol. 2006;291(3):H1395–401.

    Article  PubMed  Google Scholar 

  62. Choueiri TK, Schutz F, Je Y, et al. Risk of arterial thromboembolic events with sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. J Clin Oncol. 2010;28(13):2280–5.

    Article  CAS  PubMed  Google Scholar 

  63. Sonpavde G, Ye J, Schutz F, et al. Venous thromboembolic events with vascular endothelial growth factor receptor tyrosine kinase inhibitors: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol. 2013;87(1):80–9.

    Article  PubMed  Google Scholar 

  64. Tran H, Anand SS. Oral antiplatelet therapy in cerebrovascular disease, coronary artery disease, and peripheral arterial disease. JAMA. 2004;292(15):1867–74.

    Article  CAS  PubMed  Google Scholar 

  65. Totzeck M, Mincu RI, Mrotzek S, et al. Cardiovascular diseases in patients receiving small molecules with anti-vascular endothelial growth factor activity: a meta-analysis of approximately 29,000 cancer patients. Eur J Prev Cardiol. 2018;25(5):482–94.

    Article  PubMed  Google Scholar 

  66. Qi WX, Shen Z, Tang LN, Yao Y. Congestive heart failure risk in cancer patients treated with vascular endothelial growth factor tyrosine kinase inhibitors: a systematic review and meta-analysis of 36 clinical trials. Br J Clin Pharmacol. 2014;78(4):748–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS ONE. 2012;7(2): e30353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shah RR, Morganroth J, Shah DR. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarisation (QT interval). Drug Saf. 2013;36(5):295–316.

    Article  CAS  PubMed  Google Scholar 

  69. Sagie A, Larson MG, Goldberg RJ, et al. An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am J Cardiol. 1992;70(7):797–801.

    Article  CAS  PubMed  Google Scholar 

  70. Chitturi KR, Burns EA, Muhsen IN, et al. Cardiovascular risks with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and monoclonal antibody therapy. Curr Oncol Rep. 2022;24(4):475–91.

    Article  CAS  PubMed  Google Scholar 

  71. Thomas A, Rajan A, Giaccone G. Tyrosine kinase inhibitors in lung cancer. Hematol Oncol Clin North Am. 2012;26(3):589–605.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Metibemu DS, Akinloye OA, Akamo AJ, et al. Exploring receptor tyrosine kinases-inhibitors in cancer treatments. Egypt J Med Hum Genet. 2019;20(1):35.

    Article  Google Scholar 

  73. Fukuoka M, Yano S, Giaccone G, et al. J Clin Oncol Official J Am Soc Clin Oncol. 2019;21(12):2237–46.

    Article  Google Scholar 

  74. Orphanos GS, Ioannidis GN, Ardavanis AG. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol. 2009;48(7):964–70.

    Article  CAS  PubMed  Google Scholar 

  75. Yamaguchi K, Kanazawa S, Kinoshita Y, et al. Acute myocardial infarction with lung cancer during treatment with gefitinib: the possibility of gefitinib-induced thrombosis. Pathophysiol Haemost Thromb. 2003;34(1):48–50.

    Article  Google Scholar 

  76. Lynch DR, Kickler TS, Rade JJ. Recurrent myocardial infarction associated with gefitinib therapy. J Thromb Thrombolysis. 2011;32(1):120–4.

    Article  CAS  PubMed  Google Scholar 

  77. Omori S, Oyakawa T, Naito T, Takahashi T. Gefitinib-induced cardiomyopathy in epidermal growth receptor-mutated NSCLC. J Thorac Oncol. 2018;13(10):e207–8.

    Article  PubMed  Google Scholar 

  78. Truell JS, Fishbein MC, Figlin R. Myocarditis temporally related to the use of gefitinib (Iressa). Arch Pathol Lab Med. 2005;129(8):1044–6.

    Article  PubMed  Google Scholar 

  79. Korashy HM, Attafi IM, Ansari MA, et al. Molecular mechanisms of cardiotoxicity of gefitinib in vivo and in vitro rat cardiomyocyte: role of apoptosis and oxidative stress. Toxicol Lett. 2016;252:50–61.

    Article  CAS  PubMed  Google Scholar 

  80. Gronich N, Lavi I, Barnett-Griness O, et al. Tyrosine kinase-targeting drugs-associated heart failure. Br J Cancer. 2017;116(10):1366–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6.

    Article  CAS  PubMed  Google Scholar 

  82. Walker AJ, Card TR, West J, et al. Incidence of venous thromboembolism in patients with cancer - a cohort study using linked United Kingdom databases. Eur J Cancer. 2013;49(6):1404–13.

    Article  PubMed  Google Scholar 

  83. Zaborowska-Szmit M, Krzakowski M, Kowalski DM, Szmit S. Cardiovascular complications of systemic therapy in non-small-cell lung cancer. J Clin Med. 2020;9(5):1268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pinquié F, Chabot G, Urban T, Hureaux J. Maintenance treatment by erlotinib and toxic cardiomyopathy: a case report. Oncology. 2016;90(3):176–7.

    Article  PubMed  Google Scholar 

  85. Kus T, Aktas G, Sevinc A, et al. Could erlotinib treatment lead to acute cardiovascular events in patients with lung adenocarcinoma after chemotherapy failure? Onco Targets Ther. 2015;8:1341–3.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Herbst RS, Ansari R, Bustin F, et al. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): A double-blind, placebo-controlled, phase 3 trial. The Lancet. 2011;377(9780):1846–54.

    Article  CAS  Google Scholar 

  87. Cicènas S, Geater SL, Petrov P, et al. Maintenance erlotinib versus erlotinib at disease progression in patients with advanced non-small-cell lung cancer who have not progressed following platinum-based chemotherapy (IUNO study). Lung Cancer. 2016;102:30–7.

    Article  PubMed  Google Scholar 

  88. Ewer MS, Patel K, O’Brien D, Lorence RM. Cardiac safety of afatinib: a review of data from clinical trials. Cardio-Oncology. 2015;1(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nuvola G, Dall’Olio FG, Melotti B, et al. Cardiac toxicity from afatinib in EGFR-mutated NSCLC: a rare but possible side effect. J Thorac Oncol. 2019;14(7):e145–e146.

    Article  PubMed  Google Scholar 

  90. Tang Z, Ji X, Zhou G, et al. Hypotension from afatinib in epidermal growth factor receptor-mutated non-small cell lung cancer: a case report and literature review. Anticancer Drugs. 2022;33(1):e840–1.

    Article  CAS  PubMed  Google Scholar 

  91. Cross DAE, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4(9):1046–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kunimasa K, Kamada R, Oka T, et al. Cardiac adverse events in EGFR-mutated non-small cell lung cancer treated with osimertinib. JACC Cardio-Oncology. 2020;2(1):1–10.

    Article  Google Scholar 

  93. Thein KZ, Swarup S, Ball S, et al. Incidence of cardiac toxicities in patients with advanced non-small cell lung cancer treated with osimertinib: a combined analysis of two phase III randomized controlled trials. Ann Oncol. 2018;29(supp_8):VIII500.

    Article  Google Scholar 

  94. Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non–small-cell lung cancer. N Engl J Med. 2018;378(2):113–25.

    Article  CAS  PubMed  Google Scholar 

  95. Tagrisso tablets 40 mg, Tagrisso tablets 80 mg, the result of the use-results surveys final report. 2019 [in Japanese]. https://www.mhlw.go.jp/content/11120000/000484135.pdf.

  96. Mok TS, Wu Y-L, Ahn M-J, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–40.

    Article  CAS  PubMed  Google Scholar 

  97. Anand K, Ensor J, Trachtenberg B, Bernicker EH. Osimertinib-induced cardiotoxicity: a retrospective review of the FDA adverse events reporting system (FAERS). JACC Cardio-Oncology. 2019;1(2):172–8.

    Article  Google Scholar 

  98. Kunimasa K, Oka T, Hara S, et al. Osimertinib is associated with reversible and dose-independent cancer therapy-related cardiac dysfunction. Lung Cancer (Amsterdam, Netherlands). 2021;153:186–92.

    Article  CAS  PubMed  Google Scholar 

  99. Lyon AR, Dent S, Stanway S, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur J Heart Fail. 2020;22(11):1945–60.

    Article  PubMed  Google Scholar 

  100. Alexandre J, Cautela J, Ederhy S, et al. Cardiovascular toxicity related to cancer treatment: a pragmatic approach to the American and European cardio-oncology guidelines. J Am Heart Assoc. 2020;9(18): e018403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avirup Guha.

Ethics declarations

Conflict of Interest

Neeraj Agarwal reports personal fees from Astellas, Astra Zeneca, Aveo, Bayer, Bristol Myers Squibb, Calithera, Clovis, Eisai, Eli Lilly, EMD Serono, Exelixis, Foundation Medicine, Genentech, Gilead, Janssen, Merck, MEI Pharma, Nektar, Novartis, Pfizer, Pharmacyclics, Seattle Genetic. They also report grants from Astellas, Astra Zeneca, Bavarian Nordic, Bayer, Bristol Myers Squibb, Calithera, Celldex, Clovis, Eisai, Eli Lilly, EMD Serono, Exelixis, Genentech, Gilead, Glaxo Smith Kline, Immunomedics, Janssen, Medivation, Merck, Nektar, New Link Genetics, Novartis, Pfizer, Prometheus, Rexahn, Roche, Sanofi, Seattle Genetics, Takeda, and Tracon, outside the submitted work. Daniel Addison reports grants from American Heart Association, NHLBI-NIH, and Pelotonia, outside the submitted work. Jorge Cortes reports grants and personal fees from BMS, Novartis, Pfizer, Takeda, Daiichi, Jazz Pharmaceuticals, Merus, and Forma Therapeutics; grants from Astellas and Amphivena; and personal fees from BiolineRx and Bioptah, outside the submitted work. Neal L Weintraub reports grants from NIH-NHLBI and the American Heart Association, outside the submitted work. Nazish Sayed reports grants from NIH-NHLBI and the American Heart Association, outside the submitted work. Avirup Guha reports personal fees from Pfizer/Myovant and grants from the American Heart Association, outside the submitted work. The other authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-Oncology

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayegh, N., Yirerong, J., Agarwal, N. et al. Cardiovascular Toxicities Associated with Tyrosine Kinase Inhibitors. Curr Cardiol Rep 25, 269–280 (2023). https://doi.org/10.1007/s11886-023-01845-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01845-2

Keywords

Navigation