Skip to main content
Log in

Optimal, Early Postoperative Management of Cardiac Transplant and Durable Left Ventricular Assist Recipients

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Summarize developments in the early postoperative care of patients undergoing cardiac transplantation or left ventricular assist device implantation. Provide a practical approach with personal insights to highly complex patients at risk for prolonged hospitalization.

Recent Findings

Advancements in technology allow for percutaneous mechanical circulatory support of both the right and left ventricles either isolated or combined via subclavian and neck vessels. Since the adult heart allocation system has been changed to reduce waitlist mortality, the use of temporary mechanical circulatory support has increased. This has influenced preoperative optimization by enabling ambulation and majorly changed postoperative strategy. New doors have been opened for a multidisciplinary approach to facilitate rapid weaning of inotropic medications, limitation of sedation, early liberation from mechanical ventilation, and mobilization.

Summary

Individualized percutaneous mechanical circulatory support offers new possibilities for the early postoperative management of highly complex patients undergoing cardiac transplantation or durable left ventricular assist device implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):e895–1032.

    Google Scholar 

  2. Pun BT, Balas MC, Barnes-Daly MA, Thompson JL, Aldrich JM, Barr J, et al. Caring for critically ill patients with the ABCDEF bundle: results of the ICU liberation collaborative in over 15,000 adults. Crit Care Med. 2019;47(1):3–14.

    Article  Google Scholar 

  3. Stollings JL, Devlin JW, Lin JC, Pun BT, Byrum D, Barr J. Best practices for conducting interprofessional team rounds to facilitate performance of the ICU liberation (ABCDEF) bundle. Crit Care Med. 2020;48(4):562–70.

    Article  Google Scholar 

  4. Anstey DE, Givens R, Clerkin K, Fried J, Kalcheva N, Kumaraiah D, et al. The cardiac intensive care unit and the cardiac intensivist during the COVID-19 surge in New York City. Am Heart J. 2020;227:74–81.

    Article  CAS  Google Scholar 

  5. DeFilippis EM, Farr MA, Givertz MM. Challenges in heart transplantation in the era of COVID-19. Circulation. 2020;141(25):2048–51.

    Article  CAS  Google Scholar 

  6. Dharmavaram N, Hess T, Jaeger H, Smith J, Hermsen J, Murray D, et al. National trends in heart donor usage rates: are we efficiently transplanting more hearts? J Am Heart Assoc. 2021;10(15):e019655.

    Article  Google Scholar 

  7. Huckaby LV, Seese LM, Handzel R, Wang Y, Hickey G, Kilic A. Center-level utilization of hepatitis C virus-positive donors for orthotopic heart transplantation. Transplantation. 2021;105(12):2639–45.

    Article  CAS  Google Scholar 

  8. Pahuja M, Case BC, Molina EJ, Waksman R. Overview of the FDA’s circulatory System Devices Panel virtual meeting on the TransMedics Organ Care System (OCS) heart - portable extracorporeal heart perfusion and monitoring system. Am Heart J. 2022;247:90–9.

    Article  Google Scholar 

  9. Hoffman JRH, McMaster WG, Rali AS, Rahaman Z, Balsara K, Absi T, et al. Early US experience with cardiac donation after circulatory death (DCD) using normothermic regional perfusion. J Heart Lung Transplant. 2021;40(11):1408–18.

    Article  Google Scholar 

  10. Altshuler PJ, Helmers MR, Atluri P. Organ allocation and procurement in cardiac transplantation. Curr Opin Organ Transplant. 2021;26(3):282–9.

    Article  Google Scholar 

  11. Altshuler PJ, Helmers MR, Schiazza AR, Hu R, Han JJ, Herbst DA, et al. HCV-positive allograft use in heart transplantation is associated with increased access to overdose donors and reduced waitlist mortality without compromising outcomes. J Card Fail. 2022;28(1):32–41.

    Article  Google Scholar 

  12. • Han J, Moayedi Y, Yang W, Henricksen EJ, Lee R, Purewal S, et al. Impact of using higher-risk donor hearts for candidates with pre-transplant mechanical circulatory support. J Heart Lung Transplant. 2022;41(2):237–43. This study outlines that patients requiring pre-HTX t-MCS who received higher risk donor hearts had comparable 1-year post-transplant survival to those who received standard-risk donor hearts.

    Article  Google Scholar 

  13. Baran DA, Jaiswal A, Hennig F, Potapov E. Temporary mechanical circulatory support: devices, outcomes, and future directions. J Heart Lung Transplant. 2022;41(6):678–91.

    Article  Google Scholar 

  14. Lee JJ, Kim YS, Chung S, Jeong DS, Yang J-H, Sung K, et al. Impact of a multidisciplinary team approach on extracorporeal circulatory life support-bridged heart transplantation. Journal of Chest Surgery. 2021;54(2):99–105.

    Article  Google Scholar 

  15. SCCM. ICU liberation (A-F) bundle. Available from: https://www.sccm.org/iculiberation/abcdef-bundles.

  16. Gazda AJ, Kwak MJ, Akkanti B, Nathan S, Kumar S, de Armas IS, et al. Complications of LVAD utilization in older adults. Heart Lung. 2021;50(1):75–9.

    Article  Google Scholar 

  17. Hanke JS, Rojas SV, Avsar M, Haverich A, Schmitto JD. Minimally-invasive LVAD implantation: state of the art. Curr Cardiol Rev. 2015;11(3):246–51.

    Article  Google Scholar 

  18. Ahmad U, Khattab MA, Schaelte G, Goetzenich A, Foldenauer AC, Moza A, et al. Combining minimally invasive surgery with ultra-fast-track anesthesia in HeartMate 3 patients: a pilot study. Circ Heart Fail. 2022;15(5):e008358.

    Article  Google Scholar 

  19. Rodriguez-Aldrete D, Candiotti KA, Janakiraman R, Rodriguez-Blanco YF. Trends and new evidence in the management of acute and chronic post-thoracotomy pain-an overview of the literature from 2005 to 2015. J Cardiothorac Vasc Anesth. 2016;30(3):762–72.

    Article  Google Scholar 

  20. Adhikary SD, Prasad A, Soleimani B, Chin KJ. Continuous erector spinae plane block as an effective analgesic option in anticoagulated patients after left ventricular assist device implantation: a case series. J Cardiothorac Vasc Anesth. 2019;33(4):1063–7.

    Article  Google Scholar 

  21. Abadi A, Cohen R. Evaluation of an enhanced recovery after surgery protocol including parasternal intercostal nerve block in cardiac surgery requiring sternotomy. Am Surg. 2021;87(10):1561–4.

    Article  Google Scholar 

  22. de Sousa Arantes Ferreira G, Conde Watanabe AL, de Carvalho TN, Felippe Jorge FM, Ferreira Figueira AV, de Fatima CC, et al. Tacrolimus-associated psychotic disorder: a report of 2 cases. Transplant Proc. 2020;52(5):1350–3.

    Article  Google Scholar 

  23. Kazi SE, Hoque S. Acute psychosis following corticosteroid administration. Cureus. 2021;13(9):e18093.

    Google Scholar 

  24. Devlin JW, Skrobik Y, Gélinas C, Needham DM, Slooter AJC, Pandharipande PP, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):e825–73.

    Article  Google Scholar 

  25. Sadlonova M, Gerecke B, Herrmann-Lingen C, Kutschka I. Heart transplantation in the era of COVID-19 pandemic: delirium, post-transplant depression, and visitor restrictions; the role of liaison and inpatient psychosomatic treatment-a case report. Eur Heart J Case Rep. 5: The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.; 2021. p. ytab355.

  26. McCarthy C, Fletcher N. Early extubation in enhanced recovery from cardiac surgery. Crit Care Clin. 2020;36(4):663–74.

    Article  Google Scholar 

  27. Neethling E, Moreno Garijo J, Mangalam TK, Badiwala MV, Billia P, Wasowicz M, et al. Intraoperative and early postoperative management of heart transplantation: anesthetic implications. J Cardiothorac Vasc Anesth. 2020;34(8):2189–206.

    Article  Google Scholar 

  28. Rose L, Schultz MJ, Cardwell CR, Jouvet P, McAuley DF, Blackwood B. Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children: a cochrane systematic review and meta-analysis. Crit Care. 2015;19(1):48.

    Article  Google Scholar 

  29. Silva PL, Ball L, Rocco PRM, Pelosi P. Physiological and pathophysiological consequences of mechanical ventilation. Semin Respir Crit Care Med. 2022;43(3):321–34.

    Article  Google Scholar 

  30. Fukunishi T, Oka N, Yoshii T, Kobayashi K, Inoue N, Horai T, et al. Early extubation in the operating room after congenital open-heart surgery. Int Heart J. 2018;59(1):94–8.

    Article  Google Scholar 

  31. Mora Carpio AL, Mora JI. Ventilator management. StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2022, StatPearls Publishing LLC.; 2022.

  32. Papathanasiou M, Mincu RI, Lortz J, Horacek M, Koch A, Pizanis N, et al. Prolonged mechanical ventilation after left ventricular assist device implantation: risk factors and clinical implications. ESC Heart Fail. 2019;6(3):545–51.

    Article  Google Scholar 

  33. Gregory AJ, Grant MC, Manning MW, Cheung AT, Ender J, Sander M, et al. Enhanced recovery after cardiac surgery (ERAS Cardiac) recommendations: an important first step-but there is much work to be done. J Cardiothorac Vasc Anesth. 2020;34(1):39–47.

    Article  Google Scholar 

  34. Patarroyo M, Simbaqueba C, Shrestha K, Starling RC, Smedira N, Tang WH, et al. Pre-operative risk factors and clinical outcomes associated with vasoplegia in recipients of orthotopic heart transplantation in the contemporary era. J Heart Lung Transplant. 2012;31(3):282–7.

    Article  Google Scholar 

  35. Asleh R, Alnsasra H, Daly RC, Schettle SD, Briasoulis A, Taher R, et al. Predictors and clinical outcomes of vasoplegia in patients bridged to heart transplantation with continuous-flow left ventricular assist devices. J Am Heart Assoc. 2019;8(22):e013108.

    Article  Google Scholar 

  36. Kofler O, Simbeck M, Tomasi R, Hinske LC, Klotz LV, Uhle F, et al. Early use of methylene blue in vasoplegic syndrome: a 10-year propensity score-matched cohort study. J Clin Med. 2022;11(4).

  37. Hohlfelder B, Douglas A, Wang L, Wanek M, Bauer SR. Association of methylene blue dosing with hemodynamic response for the treatment of vasoplegia. J Cardiothorac Vasc Anesth. 2022;36(9):3543–50.

    Article  Google Scholar 

  38. Kram SJ, Kram BL, Cook JC, Ohman KL, Ghadimi K. Hydroxocobalamin or methylene blue for vasoplegic syndrome in adult cardiothoracic surgery. J Cardiothorac Vasc Anesth. 2022;36(2):469–76.

    Article  CAS  Google Scholar 

  39. Klijian A, Khanna AK, Reddy VS, Friedman B, Ortoleva J, Evans AS, et al. Treatment With angiotensin II is associated with rapid blood pressure response and vasopressor sparing in patients with vasoplegia after cardiac surgery: a post-hoc analysis of angiotensin II for the treatment of high-output shock (ATHOS-3) study. J Cardiothorac Vasc Anesth. 2021;35(1):51–8.

    Article  CAS  Google Scholar 

  40. Papazisi O, Palmen M, Danser AHJ. The use of angiotensin II for the treatment of post-cardiopulmonary bypass vasoplegia. Cardiovasc Drugs Ther. 2022;36(4):739–48.

    Article  CAS  Google Scholar 

  41. Chow JH, Strauss E, Mazzeffi MA. Angiotensin II and vasoplegia in cardiac surgery: paradigm changer or costly contender? J Cardiothorac Vasc Anesth. 2021;35(1):59–60.

    Article  Google Scholar 

  42. Kobashigawa J, Zuckermann A, Macdonald P, Leprince P, Esmailian F, Luu M, et al. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant. 2014;33(4):327–40.

    Article  Google Scholar 

  43. Alam A, Milligan GP, Joseph SM. Reconsidering the diagnostic criteria of right ventricular primary graft dysfunction. J Cardiac Fail. 2020;26(11):985–6.

    Article  Google Scholar 

  44. Escalona-Rodriguez S, Palomo-López N, Escoresca-Ortega A, Adsuar-Gómez A, Porras-López M, Corcia-Palomo Y, et al. Right ventricular assist devices after heart transplantation. Transplant Proc. 2020;52(2):575–6.

    Article  Google Scholar 

  45. Lim HS, Ranasinghe A, Quinn D, Chue CD, Mascaro J. Pathophysiology of severe primary graft dysfunction in orthotopic heart transplantation. Clin Transplant. 2021;35(9):e14398.

    Article  Google Scholar 

  46. Puwanant S, Kaveevorayan P, Kittipibul V, Sinphurmsukskul S, Ariyachaipanich A, Siwamogsatham S, et al. Acute isolated right ventricular failure after heart transplantation. J Am Coll Cardiol. 2022;79(9_Supplement):505.

    Article  Google Scholar 

  47. Noly PE, Hebert M, Lamarche Y, Cortes JR, Mauduit M, Verhoye JP, et al. Use of extracorporeal membrane oxygenation for heart graft dysfunction in adults: incidence, risk factors and outcomes in a multicentric study. Can J Surg. 2021;64(6):E567–77.

    Article  Google Scholar 

  48. Monteagudo-Vela M, Simon A, Panoulas V. Initial experience with Impella RP in a quaternary transplant center. Artif Organs. 2020;44(5):473–7.

    Article  Google Scholar 

  49. Bellavia D, Iacovoni A, Scardulla C, Moja L, Pilato M, Kushwaha SS, et al. Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur J Heart Fail. 2017;19(7):926–46.

    Article  CAS  Google Scholar 

  50. Wang TS, Cevasco M, Birati EY, Mazurek JA. Predicting, recognizing, and treating right heart failure in patients undergoing durable LVAD therapy. J Clin Med. 2022;11(11).

  51. Chriqui LE, Monney P, Kirsch M, Tozzi P. Prediction of right ventricular failure after left ventricular assist device implantation in patients with heart failure: a meta-analysis comparing echocardiographic parameters. Interact Cardiovasc Thorac Surg. 2021;33(5):784–92.

    Article  Google Scholar 

  52. Gonzalez MH, Wang Q, Yaranov DM, Albert C, Wolski K, Wagener J, et al. Dynamic assessment of pulmonary artery pulsatility index provides incremental risk assessment for early right ventricular failure after left ventricular assist device. J Card Fail. 2021;27(7):777–85.

    Article  Google Scholar 

  53. Read JM, Azih NI, Peters CJ, Gurtu V, Vishram-Nielsen JK, Wright SP, et al. Hemodynamic reserve predicts early right heart failure after LVAD implantation. J Heart Lung Transplant. 2022.

  54. Saeed D, Muslem R, Rasheed M, Caliskan K, Kalampokas N, Sipahi F, et al. Less invasive surgical implant strategy and right heart failure after LVAD implantation. J Heart Lung Transplant. 2021;40(4):289–97.

    Article  Google Scholar 

  55. •• Salna M, Garan AR, Kirtane AJ, Karmpaliotis D, Green P, Takayama H, et al. Novel percutaneous dual-lumen cannula-based right ventricular assist device provides effective support for refractory right ventricular failure after left ventricular assist device implantation. Interact Cardiovasc Thorac Surg. 2020;30(4):499–506. This study shows how modern percutaneous dual-lumen RVAD strategies can be utilized to improve outcome for patients who develop acute RHF after LVAD surgery.

  56. Shekiladze N, Condado JF, Sandesara PB, Kim JH, Devireddy C, McDaniel M, et al. A single healthcare experience with Impella RP. Catheter Cardiovasc Interv. 2021;97(1):E161–7.

    Article  Google Scholar 

  57. Arachchillage DRJ, Kamani F, Deplano S, Banya W, Laffan M. Should we abandon the APTT for monitoring unfractionated heparin? Thromb Res. 2017;157:157–61.

    Article  CAS  Google Scholar 

  58. Bartoli CR, Kang J, Restle DJ, Zhang DM, Shabahang C, Acker MA, et al. Inhibition of ADAMTS-13 by doxycycline reduces von Willebrand factor degradation during supraphysiological shear stress: therapeutic implications for left ventricular assist device-associated bleeding. JACC Heart Fail. 2015;3(11):860–9.

    Article  Google Scholar 

  59. Ki KK, Passmore MR, Chan CHH, Malfertheiner MV, Fanning JP, Bouquet M, et al. Low flow rate alters haemostatic parameters in an ex-vivo extracorporeal membrane oxygenation circuit. Intensive Care Med Exp. 2019;7(1).

  60. Costantini S, Belliato M, Ferrari F, Gazzaniga G, Ravasi M, Manera M, et al. A retrospective analysis of the hemolysis occurrence during extracorporeal membrane oxygenation in a single center. Perfusion. 2022. https://doi.org/10.1177/02676591211073768.

    Article  Google Scholar 

  61. Zapletal B, Zimpfer D, Schloeglhofer T, Fritzer-Szekeres M, Szekeres T, Bernardi MH, et al. Association between plasma-free hemoglobin levels, lactate dehydrogenase and hemolysis-index in patients with and without mechanical circuit support - a retrospective data analysis. 2022.

  62. Fabrizio C, Levito MN, Rivosecchi R, Bashline M, Slocum B, Kilic A, et al. Outcomes of systemic anticoagulation with bivalirudin for Impella 5.0. Int J Artif Organs. 2021;44(10):681–6.

    Article  CAS  Google Scholar 

  63. • Vandenbriele C, Arachchillage DJ, Frederiks P, Giustino G, Gorog DA, Gramegna M, et al. Anticoagulation for percutaneous ventricular assist device-supported cardiogenic shock: JACC review topic of the week. J Am Coll Cardiol. 2022;79(19):1949–62. The authors outline strategies for optimal anticoagulation management during percutaneous LVAD support. They present a parallel anti-factor Xa/activated partial thromboplastin time-guided anticoagulation algorithm and discuss pitfalls of heparin monitoring in critically ill patients.

    Article  CAS  Google Scholar 

  64. Okoh AK, Chan O, Schultheis M, Gupta M, Shah A, Gold J, et al. Association between increased-risk donor social behaviors and recipient outcomes after heart transplantation. Clin Transplant. 2020;34(3):e13787.

    Article  Google Scholar 

  65. Baran DA, Lansinger J, Long A, Herre JM, Yehya A, Sawey EJ, et al. Intoxicated donors and heart transplant outcomes: long-term safety. Circ Heart Fail. 2021;14(8):e007433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Freundt.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freundt, M., Lavanga, E. & Brehm, C. Optimal, Early Postoperative Management of Cardiac Transplant and Durable Left Ventricular Assist Recipients. Curr Cardiol Rep 24, 2023–2029 (2022). https://doi.org/10.1007/s11886-022-01823-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-022-01823-0

Keywords

Navigation