Skip to main content
Log in

Dyssynchronous Heart Failure: A Clinical Review

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Dyssynchrony occurs when portions of the cardiac chambers contract in an uncoordinated fashion. Ventricular dyssynchrony primarily impacts the left ventricle and may result in heart failure. This entity is recognized as a major contributor to the development and progression of heart failure. A hallmark of dyssynchronous heart failure (HFd) is left ventricular recovery after dyssynchrony is corrected. This review discusses the current understanding of pathophysiology of HFd and provides clinical examples and current techniques for treatment.

Recent Findings

Data show that HFd responds poorly to medical therapy. Cardiac resynchronization therapy (CRT) in the form of conventional biventricular pacing (BVP) is of proven benefit in HFd, but is limited by a significant non-responder rate. Recently, conduction system pacing (His bundle or left bundle branch area pacing) has also shown promise in correcting HFd.

Summary

HFd should be recognized as a distinct etiology of heart failure; HFd responds best to CRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tseng W-YI, Reese TG, Weisskoff RM, Brady TJ, Wedeen VJ. Myocardial fiber shortening in humans: initial results of MR imaging. Radiology. 2000;216:128–39.

    Article  CAS  Google Scholar 

  2. MacGowan GA, Shapiro EP, Azhari H, Siu CO, Hees PS, Hutchins GM, et al. Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy. Am Heart Assoc. 1997;96(2):535–41.

    CAS  Google Scholar 

  3. Deng D, Jiao P, Ye X, Xia L. An image-based model of the whole human heart with detailed anatomical structure and fiber orientation. Comput Math Methods Med Hindawi Limited. 2012;2012;891070.

    Google Scholar 

  4. Nakatani S. Left ventricular rotation and twist: why should we learn? J Cardiovasc Ultrasound Korean Soc Echocardiogr. 2011;19(1):1–6.

    Article  Google Scholar 

  5. de Almeida MC, Lopes F, Fontes P, Barra F, Guimaraes R, Vilhena V. Ungulates heart model: a study of the Purkinje network using India ink injection, transparent specimens and computer tomography. Anat Sci Int Springer-Verlag Tokyo. 2015;90(4):240–50.

    Article  Google Scholar 

  6. Hammermeister KE, Brooks RC, Warbasse JR. The rate of change of left ventricular volume in man. Circulation. 1974;49(4):729–38.

    Article  CAS  Google Scholar 

  7. Glikson M, Israel C, Denmark C, Michowitz Y, Force T, Israel C, et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy developed by the Task Force on cardiac pacing and cardiac. Eur Heart J. 2021;00:1–94.

    Google Scholar 

  8. Yu CM, Sanderson JE, Gorcsan J. Echocardiography, dyssynchrony, and the response to cardiac resynchronization therapy. Eur Heart J. 2010;31(19):2326–39.

    Article  Google Scholar 

  9. Bader H, Garrigue S, Lafitte S, Reuter S, Jaïs P, Haïssaguerre M, et al. Intra-left ventricular electromechanical asynchrony: a new independent predictor of severe cardiac events in heart failure patients. J Am Coll Cardiol. 2004;43:248–56.

    Article  Google Scholar 

  10. Chalil S, Stegemann B, Muhyaldeen S, Khadjooi K, Smith REA, Jordan PJ, et al. Intraventricular dyssynchrony predicts mortality and morbidity after cardiac resynchronization therapy: a study using cardiovascular magnetic resonance tissue synchronization imaging. J Am Coll Cardiol. 2007;50(3):243–52.

    Article  Google Scholar 

  11. Bleeker GB, Schalij MJ, Molhoek SG, Verwey HF, Holman ER, Boersma E, et al. Relationship between QRS duration and left ventricular dyssynchrony in patients with end-stage heart failure. J Cardiovasc Electrophysiol. 2004;15(5):544–9.

    Article  Google Scholar 

  12. Niu H, Hua W, Zhang S, Sun X, Wang F, Chen K, et al. Prevalence of dyssynchrony derived from echocardiographic criteria in heart failure patients with normal or prolonged QRS duration. Echocardiography. 2007;24(4):348–52.

    Article  Google Scholar 

  13. Haghjoo M, Bagherzadeh A, Farjam A, Ojaghi Haghighi Z, Esmaielzadeh M, Alizadeh A, et al. Prevalence of mechanical dyssynchrony in heart failure patients with different QRS durations. Pacing Clin Electrophysiol. 2007;30(5):616–22.

    Article  Google Scholar 

  14. Hawkins NM, Petrie MC, MacDonald MR, Hogg KJ, McMurray JJV. Selecting patients for cardiac resynchronization therapy: electrical or mechanical dyssynchrony? Eur Heart J. 2006;27(11):1270–81.

    Article  Google Scholar 

  15. MacDonald MR, Hawkins NM, Balmain S, Dalzell J, McMurray JJV, Petrie MC. Transthoracic echocardiography: a survey of current practice in the UK. QJM. 2008;101(5):345–9.

    Article  CAS  Google Scholar 

  16. Nagueh SF. Mechanical dyssynchrony in congestive heart failure: Diagnostic and therapeutic implications. J Am Coll Cardiol. 2008;51(1):18–22.

    Article  Google Scholar 

  17. Huizar JF, Ellenbogen KA, Tan AY, Kaszala K. Arrhythmia-induced cardiomyopathy. J Am Coll Cardiol. 2019;73(18):2328–44.

    Article  Google Scholar 

  18. Lee SJ, McCulloch C, Mangat I, Foster E, de Marco T, Saxon LA. Isolated bundle branch block and left ventricular dysfunction. J Card Fail. 2003;9(2):87–92.

    Article  Google Scholar 

  19. Blanc JJ, Fatemi M, Bertault V, Baraket F, Etienne Y. Evaluation of left bundle branch block as a reversible cause of non-ischaemic dilated cardiomyopathy with severe heart failure. A new concept of left ventricular dyssynchrony-induced cardiomyopathy. Europace. 2005;7(6):604–10.

    Article  Google Scholar 

  20. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Colvin MM, Deswal A, et al. 2022 AHA/ACC/HFSA Guideline for the management of heart failure. J Am Coll Cardiol. 2022;79:e263–421.

    Article  Google Scholar 

  21. Strik M, van Middendorp LB, Vernooy K. Animal models of dyssynchrony. J Cardiovasc Transl Res. 2012;5(2):135–45.

    Article  Google Scholar 

  22. Vernooy K, Verbeek XAAM, Peschar M, Crijns HJGM, Arts T, Cornelussen RNM, et al. Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. Eur Heart J. 2005;26(1):91–8.

    Article  Google Scholar 

  23. Auricchio A, Stellbrink C, Butter C, Sack S, Vogt J, Misier AR, et al. Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay. J Am Coll Cardiol. 2003;42(12):2109–16.

    Article  Google Scholar 

  24. Stavrakis S, Lazzara R, Thadani U. The benefit of cardiac resynchronization therapy and QRS duration: a meta-analysis. J Cardiovasc Electrophysiol. 2012;23(2):163–8.

    Article  Google Scholar 

  25. Vaillant C, Martins RP, Donal E, Leclercq C, Thébault C, Behar N, et al. Resolution of left bundle branch block-induced cardiomyopathy by cardiac resynchronization therapy. J Am Coll Cardiol. 2013;61(10):1089–95.

    Article  Google Scholar 

  26. Friedman DJ, Emerek K, Kisslo J, Søgaard P, Atwater BD. Left bundle-branch block is associated with asimilar dyssynchronous phenotype in heart failure patients with normal and reduced ejection fractions. Am Heart J. 2021;231:45–55.

    Article  Google Scholar 

  27. Sze E, Samad Z, Dunning A, Campbell KB, Loring Z, Atwater BD, et al. Impaired recovery of left ventricular function in patients with cardiomyopathy and left bundle branch block. J Am Coll Cardiol. 2018;71(3):306–17.

    Article  Google Scholar 

  28. Wang H, He Y, Du X, Yao R, Chang S, Guo F, et al. Differentiation between left bundle branch block (LBBB) preceded dilated cardiomyopathy and dilated cardiomyopathy preceded LBBB by cardiac magnetic resonance imaging. Pacing Clin Electrophysiol. 2020;43:847–55.

    Article  Google Scholar 

  29. Sanna GD, Merlo M, Moccia E, Fabris E, Masia SL, Finocchiaro G, et al. Left bundle branch block-induced cardiomyopathy: a diagnostic proposal for a poorly explored pathological entity. Int J Cardiol. 2020;299:199–205.

    Article  Google Scholar 

  30. Duffee DF, Shen W-K, Smith HC, Shen K. Suppression of frequent premature ventricular contractions and improvement of left ventricular function in patients with presumed idiopathic dilated cardiomyopathy study population. Mayo Clin Proc. 1998;73:430–3.

    Article  CAS  Google Scholar 

  31. Dukes JW, Dewland TA, Vittinghoff E, Mandyam MC, Heckbert SR, Siscovick DS, et al. Ventricular ectopy as a predictor of heart failure and death. J Am Coll Cardiol. 2015;66(2):101–9.

    Article  Google Scholar 

  32. Akoum NW, Daccarett M, Wasmund SL, Hamdan MH. An animal model for ectopy-induced cardiomyopathy. Pacing Clin Electrophysiol. 2011;34(3):291–5.

    Article  Google Scholar 

  33. Tanaka Y, Rahmutula D, Duggirala S, Nazer B, Fang Q, Olgin J, et al. Diffuse fibrosis leads to a decrease in unipolar voltage: validation in a swine model of premature ventricular contraction-induced cardiomyopathy. Heart Rhythm. 2016;13:547–54.

    Article  Google Scholar 

  34. Huizar JF, Kaszala K, Potfay J, Minisi AJ, Lesnefsky EJ, Abbate A, et al. Left ventricular systolic dysfunction induced by ventricular ectopy: a novel model for premature ventricular contraction-induced cardiomyopathy. Circ Arrhythm Electrophysiol. 2011;4(4):543–9.

    Article  Google Scholar 

  35. Walters TE, Rahmutula D, Szilagyi J, Alhede C, Sievers R, Fang Q, et al. Left ventricular dyssynchrony predicts the cardiomyopathy associated with premature ventricular contractions. J Am Coll Cardiol. 2018;72(23A):2870–82.

    Article  Google Scholar 

  36. Ataklte F, Erqou S, Laukkanen J, Kaptoge S. Meta-analysis of ventricular premature complexes and their relation to cardiac mortality in general populations. Am J Cardiol. 2013;112(8):1263–70.

    Article  Google Scholar 

  37. Carballeira Pol L, Deyell MW, Frankel DS, Benhayon D, Squara F, Chik W, et al. Ventricular premature depolarization QRS duration as a new marker of risk for the development of ventricular premature depolarization-induced cardiomyopathy. Heart Rhythm. 2014;11(2):299–306.

    Article  Google Scholar 

  38. Lee YH, Zhong L, Roger VL, Asirvatham SJ, Shen WK, Slusser JP, et al. Frequency, origin, and outcome of ventricular premature complexes in patients with or without heart diseases. Am J Cardiol. 2014;114(9):1373–8.

    Article  Google Scholar 

  39. Fazio G, Mongiovi M, Sutera L, Novo G, Novo S, Pipitone S. Segmental dyskinesia in Wolff-Parkinson-White syndrome: a possible cause of dilatative cardiomyopathy. Int J Cardiol. 2008;123:e31–4.

    Article  Google Scholar 

  40. Tomaske M, Janousek J, Rázek V, Gebauer RA, Tomek V, Hindricks G, et al. Adverse effects of Wolff-Parkinson-White syndrome with right septal or posteroseptal accessory pathways on cardiac function. Europace. 2008;10(2):181–9.

    Article  Google Scholar 

  41. Cadrin-Tourigny J, Fournier A, Andelfinger G, Khairy P. Severe left ventricular dysfunction in infants with ventricular preexcitation. Heart Rhythm. 2008;5(9):1320–2.

    Article  Google Scholar 

  42. Udink ten Cate FEA, Kruessell MA, Wagner K, Trieschmann U, Emmel M, Brockmeier K, et al. Dilated cardiomyopathy in children with ventricular preexcitation: the location of the accessory pathway is predictive of this association. J Electrocardiol. 2010;43(2):146–54.

    Article  Google Scholar 

  43. Tops LF, Schalij MJ, Holman ER, van Erven L, van der Wall EE, Bax JJ. Right ventricular pacing can induce ventricular dyssynchrony in patients with atrial fibrillation after atrioventricular node ablation. J Am Coll Cardiol. 2006;48(8):1642–8.

    Article  Google Scholar 

  44. Whipple GH, Sheffield LT, Woodman EG, Theophilis C, Friedman S. Reversible congestive heart failure due to chronic rapid stimulation of the normal heart. Proc N Engl Cardiovasc Soc. 1962;20:39–40.

    Google Scholar 

  45. Prinzen FW, Hunter WC, Wyman BT, Mcveigh ER. Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol. 1999;33(6):1735–42.

    Article  CAS  Google Scholar 

  46. Moe GW, Stopps TP, Angus C, Forster C, de Bold J, Armstrong PW. Alterations in serum sodium in relation to atria1 natriuretic factor and other neuroendocrine variables in experimental pacing-induced heart failure. J Am Coll Cardiol. 1989;13(1):173–9.

    Article  CAS  Google Scholar 

  47. Tanaka R, Fulbright BM, Mukherjee R, Burchell SA, Crawford FA, Zile MR, et al. The cellular basis for blunted response to beta-adrenergic stimulation in supraventricular tachycardia-induced cardiomyopathy. J Mol Cell Cardiol. 1993;25:1215–33.

    Article  CAS  Google Scholar 

  48. Wilkoff BL, Cook JR, Epstein AE, Greene HL, Hallstrom AP, Hsia H, et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator the dual chamber and VVI implantable defibrillator (DAVID) trial. J Am Med Assoc. 2002;288(24):3115–23.

    Article  Google Scholar 

  49. Kiehl EL, Makki T, Kumar R, Gumber D, Kwon DH, Rickard JW, et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy in patients with complete atrioventricular block and preserved left ventricular systolic function. Heart Rhythm. 2016;13:2272–8.

    Article  Google Scholar 

  50. Khurshid S, Liang JJ, Owens A, Lin D, Schaller R, Epstein AE, et al. Longer paced QRS duration is associated with increased prevalence of right ventricular pacing-induced cardiomyopathy. J Cardiovasc Electrophysiol. 2016;27:1174–9.

    Article  Google Scholar 

  51. Chen S, Yin Y, Lan X, Liu Z, Ling Z, Su L, et al. Paced QRS duration as a predictor for clinical heart failure events during right ventricular apical pacing in patients with idiopathic complete atrioventricular block: results from an observational cohort study (PREDICT-HF). Eur J Heart Fail. 2013;15(3):352–9.

    Article  Google Scholar 

  52. Ghio S, Constantina C, Klersyb C, Serioa A, Fontanaa A, Campanaa C, et al. Interventricular and intraventricular dyssynchrony are common in heart failure patients, regardless of QRS duration. Eur Heart J. 2004;25(7):571-8.

    Article  Google Scholar 

  53. Parsai C, Bijnens B, Sutherland GR, Baltabaeva A, Claus P, Marciniak M, et al. Toward understanding response to cardiac resynchronization therapy: left ventricular dyssynchrony is only one of multiple mechanisms. Eur Heart J. 2009;30(8):940-9.

    Article  Google Scholar 

  54. Szulik M, Tillekaerts M, Vangeel V, Ganame J, Willems R, Lenarczyk R, et al. Assessment of apical rocking: a new, integrative approach for selection of candidates for cardiac resynchronization therapy. Eur J Echocardiogr. 2010;11(10):863–9.

    Article  Google Scholar 

  55. Beela AS, Ünlü S, Duchenne J, Ciarka A, Daraban AM, Kotrc M, et al. Assessment of mechanical dyssynchrony can improve the prognostic value of guideline-based patient selection for cardiac resynchronization therapy. Eur Heart J Cardiovasc Imaging. 2019;20(1):66–74.

    Article  Google Scholar 

  56. Smiseth OA, Russell K, Skulstad H. The role of echocardiography in quantification of left ventricular dyssynchrony: state of the art and future directions. Eur Heart J Cardiovasc Imaging. 2012;13(1):61–8.

    Article  Google Scholar 

  57. Mele D, Luisi GA, Malagù M, Laterza A, Ferrari R, Bertini M. Echocardiographic evaluation of cardiac dyssynchrony: does it still matter? Echocardiography. 2018;35(5):707–15.

    Article  Google Scholar 

  58. Delgado V, Ypenburg C, van Bommel RJ, Tops LF, Mollema SA, Marsan NA, et al. Assessment of left ventricular dyssynchrony by speckle tracking strain imaging: Comparison between longitudinal, circumferential, and radial strain in cardiac resynchronization therapy. J Am Coll Cardiol. 2008;51(20):1944–52.

    Article  Google Scholar 

  59. Pitzalis MV, Iacoviello M, Romito R, Massari F, Rizzon B, Luzzi G, et al. Clinical application of echocardiographic findings cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol. 2002;40(9):1615–22.

    Article  Google Scholar 

  60. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, et al. Results of the predictors of response to CRT (PROSPECT) trial. Circulation. 2008;117(20):2608–16.

    Article  Google Scholar 

  61. Chen J, Garcia EV, Bax JJ, Iskandrian AE, Borges-Neto S, Soman P. SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony. J Nucl Cardiol. 2011;18(4):685–94.

    Article  Google Scholar 

  62. Cooke CD, Esteves FP, Chen J, Garcia EV. Left ventricular mechanical synchrony from stress and rest 82Rb PET myocardial perfusion ECG-gated studies: differentiating normal from LBBB patients. J Nucl Cardiol. 2011;18(6):1076–85.

    Article  Google Scholar 

  63. Lardo AC, Abraham TP, Kass DA. Magnetic resonance imaging assessment of ventricular dyssynchrony: current and emerging concepts. J Am Coll Cardiol. 2005;46(12):2223–8.

    Article  Google Scholar 

  64. Gopinathannair R, Etheridge SP, Marchlinski FE, Spinale FG, Lakkireddy D, Olshansky B. Arrhythmia-induced cardiomyopathies mechanisms, recognition, and management. J Am Coll Cardiol. 2015;66(15):1714–28.

    Article  Google Scholar 

  65. • Nguyên UC, Verzaal NJ, van Nieuwenhoven FA, Vernooy K, Prinzen FW. Pathobiology of cardiac dyssynchrony and resynchronization therapy. Europace. 2018;20(12):1898–909. A detailed review of the molecular underpinnings behind ventricular dyssynchrony.

    Article  Google Scholar 

  66. Rosen BD, Fernandes VRS, Nasir K, Helle-Valle T, Jerosch-Herold M, Bluemke DA, et al. Age, increased left ventricular mass, and lower regional myocardial perfusion are related to greater extent of myocardial dyssynchrony in asymptomatic individuals: the multi-ethnic study of atherosclerosis. Circulation. 2009;120(10):859–66.

    Article  Google Scholar 

  67. Prinzen FW, Augustijn CH, Arts T, Allessie MA, Reneman RS, Leerssen H, et al. Redistribution of myocardial fiber strain and blood flow by asynchronous activation. Am J Physiol. 1990;259:H300–8.

    CAS  Google Scholar 

  68. van Oosterhout MFM, Arts T, Bassingthwaighte JB, Renemana RS, Prinzen FW. Relation between local myocardial growth and blood flow during chronic ventricular pacing. Cardiovasc Res. 2002;53(4):831–40.

    Article  Google Scholar 

  69. Ukkonen H, Beanlands RSB, Burwash IG, de Kemp RA, Nahmias C, Fallen E, et al. Effect of cardiac resynchronization on myocardial efficiency and regional oxidative metabolism. Circulation. 2003;107(1):28–31.

    Article  CAS  Google Scholar 

  70. Nelson GS, Berger RD, Fetics BJ, Talbot M, Spinelli JC, Hare JM, et al. Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block. Circulation. 2000;102(25):3053–9.

    Article  CAS  Google Scholar 

  71. Ono S, Nohara R, Kambara H, Okuda K, Kawai C. Regional myocardial perfusion and glucose metabolism in experimental left bundle branch block background. Circulation. 1992;85(3):1125–31.

    Article  CAS  Google Scholar 

  72. van Oosterhout MFM, Prinzen FW, Arts T, Schreuder JJ, Vanagt WYR, et al. Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall. Circulation. 1998;98(6):588–95.

    Article  Google Scholar 

  73. Vernooy K, Cornelussen RNM, Verbeek XAAM, Vanagt WYR, van Hunnik A, Kuiper M, et al. Cardiac resynchronization therapy cures dyssynchronopathy in canine left bundle-branch block hearts. Eur Heart J. 2007;28(17):2148–55.

    Article  Google Scholar 

  74. Lin JM, Lai LP, Lin CS, Chou NK, Chiu CY, Lin JL. Left ventricular extracellular matrix remodeling in dogs with right ventricular apical pacing. J Cardiovasc Electrophysiol. 2010;21(10):1142–9.

    Article  Google Scholar 

  75. Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: Relation to ventricular and myocyte function. 1998;82(4):482–95.

    CAS  Google Scholar 

  76. Tolosana JM, Mont L, Sitges M, Berruezo A, Delgado V, Vidal B, et al. Plasma tissue inhibitor of matrix metalloproteinase-1 (TIMP-1): an independent predictor of poor response to cardiac resynchronization therapy. Eur J Heart Fail. 2010;12(5):492–8.

    Article  CAS  Google Scholar 

  77. van Berlo JH, Maillet M, Molkentin JD. Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Investig. 2013;123(1):37–45.

    Article  Google Scholar 

  78. Aiba T, Hesketh GG, Barth AS, Liu T, Daya S, Chakir K, et al. Electrophysiological consequences of dyssynchronous heart failure and its restoration by resynchronization therapy. Circulation. 2009;119(9):1220–30.

    Article  Google Scholar 

  79. Brette F, Orchard C. T-tubule function in mammalian cardiac myocytes. Circ Res. 2003;92(11):1182–92.

    Article  CAS  Google Scholar 

  80. Wei S, Guo A, Chen B, Kutschke W, Xie YP, Zimmerman K, et al. T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res. 2010;107(4):520–31.

    Article  CAS  Google Scholar 

  81. Seidel T, Navankasattusas S, Ahmad A, Diakos NA, Xu WD, Tristani-Firouzi M, et al. Sheet-like remodeling of the transverse tubular system in human heart failure impairs excitation-contraction coupling and functional recovery by mechanical unloading. Circulation. 2017;135(17):1632–45.

    Article  Google Scholar 

  82. Chen B, Guo A, Zhang C, Chen R, Zhu Y, Hong J, et al. Critical roles of junctophilin-2 in T-tubule and excitation-contraction coupling maturation during postnatal development. Cardiovasc Res. 2013;100(1):54–62.

    Article  CAS  Google Scholar 

  83. Jiang M, Zhang M, Howren M, Wang Y, Tan A, Balijepalli RC, et al. JPH-2 interacts with Cai-handling proteins and ion channels in dyads: contribution to premature ventricular contraction-induced cardiomyopathy. Heart Rhythm. 2016;13(3):743–52.

    Article  CAS  Google Scholar 

  84. Kirk JA, Holewinski RJ, Kooij V, Agnetti G, Tunin RS, Witayavanitkul N, et al. Cardiac resynchronization sensitizes the sarcomere to calcium by reactivating GSK-3β. J Clin Investig. 2014;124(1):129–39.

    Article  CAS  Google Scholar 

  85. Klug D, Boule S, Wissocque L, Montaigne D, Marechal X, Hassoun SM, et al. Right ventricular pacing with mechanical dyssynchrony causes apoptosis interruptus and calcium mishandling. Can J Cardiol. 2013;29(4):510–8.

    Article  Google Scholar 

  86. Akar FG, Nass RD, Hahn S, Cingolani E, Shah M, Hesketh GG, et al. Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am J Physiol Heart Circ Physiol. 2007;293:H1223–30.

    Article  CAS  Google Scholar 

  87. Spragg DD, Akar FG, Helm RH, Tunin RS, Tomaselli GF, Kass DA. Abnormal conduction and repolarization in late-activated myocardium of dyssynchronously contracting hearts. Cardiovasc Res. 2005;67(1):77–86.

    Article  CAS  Google Scholar 

  88. Valdivia CR, Chu WW, Pu J, Foell JD, Haworth RA, Wolff MR, et al. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol. 2005;38(3):475–83.

    Article  CAS  Google Scholar 

  89. Vanderheyden M, Mullens W, Delrue L, Goethals M, Verstreken S, Wijns W, et al. Endomyocardial upregulation of β1 adrenoreceptor gene expression and myocardial contractile reserve following cardiac resynchronization therapy. J Card Fail. 2008;14(2):172–8.

    Article  CAS  Google Scholar 

  90. Bradham WS, Bozkurt B, Gunasinghe H, Mann D, Spinale FG. Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: a current perspective. Cardiovasc Res. 2002;53(4):822–30.

    Article  CAS  Google Scholar 

  91. Recchia FA, Mcconnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog original contributions. Circ Res. 1998;83(10):969–79.

    Article  CAS  Google Scholar 

  92. Cha YM, Chareonthaitawee P, Dong YX, Kemp BJ, Oh JK, Miyazaki C, et al. Cardiac sympathetic reserve and response to cardiac resynchronization therapy. Circ Heart Fail. 2011;4(3):339–44.

    Article  Google Scholar 

  93. Chakir K, Daya SK, Aiba T, Tunin RS, Dimaano VL, Abraham TP, et al. Mechanisms of enhanced β-adrenergic reserve from cardiac resynchronization therapy. Circulation. 2009;119(9):1231–40.

    Article  CAS  Google Scholar 

  94. Chakir K, Depry C, Dimaano VL, Zhu WZ, Vanderheyden M, Bartunek J, et al. Gαs-biased β2-adrenergic receptor signaling from restoring synchronous contraction in the failing heart. Sci Transl Med. 2011;3(100):1–10.

    Article  Google Scholar 

  95. de Maria R, Landolina M, Gasparini M, Schmitz B, Campolo J, Parolini M, et al. Genetic variants of the renin-angiotensin-aldosterone system and reverse remodeling after cardiac resynchronization therapy. J Card Fail. 2012;18(10):762–8.

    Article  Google Scholar 

  96. Trichon BH, Felker GM, Shaw LK, Cabell CH, O’Connor CM. Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure. Am J Cardiol. 2003;91(5):538–43.

    Article  Google Scholar 

  97. Lancellotti P, Stainier PY, Lebois F, Piérard LA. Effect of dynamic left ventricular dyssynchrony on dynamic mitral regurgitation in patients with heart failure due to coronary artery disease. Am J Cardiol. 2005;96(6):1304–7.

    Article  Google Scholar 

  98. Bartko PE, Arfsten H, Heitzinger G, Pavo N, Strunk G, Gwechenberger M, et al. Papillary muscle dyssynchrony-mediated functional mitral regurgitation: mechanistic insights and modulation by cardiac resynchronization. JACC Cardiovasc Imaging. 2019;12(9):1728–37.

    Article  Google Scholar 

  99. Ypenburg C, Lancellotti P, Tops LF, Bleeker GB, Holman ER, Piérard LA, et al. Acute effects of initiation and withdrawal of cardiac resynchronization therapy on papillary muscle dyssynchrony and mitral regurgitation. J Am Coll Cardiol. 2007;50(21):2071–7.

    Article  Google Scholar 

  100. Michalski B, Stankovic I, Pagourelias E, Ciarka A, Aarones M, Winter S, et al. Relationship of mechanical dyssynchrony and LV remodeling with improvement of mitral regurgitation after CRT. JACC Cardiovasc Imaging. 2022;15(2):212–20.

    Article  Google Scholar 

  101. Solis J, McCarty D, Levine RA, Handschumacher MD, Fernandez-Friera L, Chen-Tournoux A, et al. Mechanism of decrease in mitral regurgitation after cardiac resynchronization therapy: optimization of the force-balance relationship. Circ Cardiovasc Imaging. 2009;2(6):444–50.

    Article  Google Scholar 

  102. Tang ASL, Wells GA, Talajic M, Arnold MO, Sheldon R, Connolly S, et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med. 2010;363(25):2385–95.

    Article  CAS  Google Scholar 

  103. Abraham W, Fisher W, Smith A, Delurgio D, Leon A, Loh E, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346(24):1845–53.

    Article  Google Scholar 

  104. Bristow M, Saxon L, Boehmer J, Krueger S, Kass DA, de Marco T, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350(21):2140–50.

    Article  CAS  Google Scholar 

  105. Cleland J, Daubert J-C, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–49.

    Article  CAS  Google Scholar 

  106. Linde C, Gold MR, Abraham WT, Sutton MSJ, Ghio S, Cerkvenik J, et al. Long-term impact of cardiac resynchronization therapy in mild heart failure: 5-year results from the REsynchronization reVErses Remodeling in Systolic left vEntricular dysfunction (REVERSE) study. Eur Heart J. 2013;34(33):2592–9.

    Article  Google Scholar 

  107. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361(14):1329–38.

    Article  Google Scholar 

  108. Curtis AB, Worley SJ, Adamson PB, Chung ES, Niazi I, Sherfesee L, et al. Biventricular pacing for atrioventricular block and systolic dysfunction. N Engl J Med. 2013;368(17):1585–93.

    Article  CAS  Google Scholar 

  109. Killu AM, Mazo A, Grupper A, Madhavan M, Webster T, Brooke KL, et al. Super-response to cardiac resynchronization therapy reduces appropriate implantable cardioverter defibrillator therapy. Europace. 2018;20(8):1303–11.

    Article  Google Scholar 

  110. Wang NC, Singh M, Adelstein EC, Jain SK, Stuart Mendenhall G, Shalaby AA, et al. New-onset left bundle branch block-associated idiopathic nonischemic cardiomyopathy and left ventricular ejection fraction response to guideline-directed therapies: The NEOLITH study. Heart Rhythm. 2016;13(4):933–42.

    Article  Google Scholar 

  111. Wang NC, Li JZ, Adelstein EC, Althouse AD, Sharbaugh MS, Jain SK, et al. New-onset left bundle branch block-associated idiopathic nonischemic cardiomyopathy and time from diagnosis to cardiac resynchronization therapy: the NEOLITH II study. Pacing Clin Electrophysiol. 2018;41(2):143–54.

    Article  Google Scholar 

  112. Schwerg M, Dreger H, Poller WC, Dust B, Melzer C. Efficacy of optimal medical therapy and cardiac resynchronization therapy upgrade in patients with pacemaker-induced cardiomyopathy. J Interv Cardiac Electrophysiol. 2015;44(3):289–96.

    Article  Google Scholar 

  113. Herweg B, Ilercil A, Madramootoo C, Krishnan S, Rinde-Hoffman D, Weston M, et al. Latency during left ventricular pacing from the lateral cardiac veins: a cause of ineffectual biventricular pacing. Pacing Clin Electrophysiol. 2006;29(6):574–81.

    Article  Google Scholar 

  114. Jastrzebski M, Wiliński J, Fijorek K, Sondej T, Czarnecka D. Mortality and morbidity in cardiac resynchronization patients: impact of lead position, paced left ventricular QRS morphology and other characteristics on long-term outcome. Europace. 2013;15(2):258–65.

    Article  Google Scholar 

  115. Varma N, Boehmer J, Bhargava K, Yoo D, Leonelli F, Costanzo M, et al. Evaluation, management, and outcomes of patients poorly responsive to cardiac resynchronization device therapy. J Am Coll Cardiol. 2019;74(21):2588–603.

    Article  Google Scholar 

  116. Naqvi SY, Jawaid A, Goldenberg I, Kutyifa V. Non-response to cardiac resynchronization therapy. Curr Heart Fail Rep. 2018;15(5):315–21.

    Article  CAS  Google Scholar 

  117. Vijayaraman P, Herweg B, Verma A, Sharma PS, Batul SA, Ponnusamy SS, et al. Rescue left bundle branch area pacing in coronary venous lead failure or nonresponse to biventricular pacing: results from International LBBAP Collaborative Study Group. Heart Rhythm. 2022;19(8):1272–80.

    Article  Google Scholar 

  118. Morina-Vazquez P, Barba-Pichardo R, Venegas-Gamero J, Herrera-Carranza M. Cardiac resynchronization through selective His bundle pacing in a patient with the so-called InfraHis atrioventricular block. Pacing Clin Electrophysiol. 2005;28(7):726–9.

    Article  Google Scholar 

  119. Lustgarten DL, Calame S, Crespo EM, Calame J, Lobel R, Spector PS. Electrical resynchronization induced by direct His-bundle pacing. Heart Rhythm. 2010;7(1):15–21.

    Article  Google Scholar 

  120. Barba-Pichardo R, Sanchez AM, Fernandez-Gomez J, Morina-Vazquez P, Venegas-Gamero J, Herrera-Carranza M, et al. Ventricular resynchronization therapy by direct His-bundle pacing using an internal cardioverter defibrillator. Europace. 2013;15(1):83–8.

    Article  Google Scholar 

  121. Lustgarten DL, Crespo EM, Arkhipova-jenkins I, Lobel R, Winget J, Koehler J, et al. His-bundle pacing versus biventricular pacing in cardiac resynchronization therapy patients: a crossover design comparison. Heart Rhythm. 2015;12:1548–57.

    Article  Google Scholar 

  122. Ajijola OA, Upadhyay GA, Macias C, Shivkumar K, Tung R. Permanent His-bundle pacing for cardiac resynchronization therapy: Initial feasibility study in lieu of left ventricular lead. Heart Rhythm. 2017;14:1353–61.

    Article  Google Scholar 

  123. Sharma PS, Dandamudi G, Herweg B, Wilson D, Singh R, Naperkowski A, et al. Permanent His-bundle pacing as an alternative to biventricular pacing for cardiac resynchronization therapy: a multicenter experience. Heart Rhythm. 2017;15:413–20.

    Article  Google Scholar 

  124. Arnold A, Shun-Shin M, Keene D, Howard J, Sohaib S, Wright I, et al. His resynchronization versus biventricular pacing in patients with heart failure and left bundle branch block. J Am Coll Cardiol. 2018;72(24):3112–22.

    Article  Google Scholar 

  125. Huang W, Su L, Wu S, Xu L, Xiao F, Zhou X, et al. Long-term outcomes of His bundle pacing in patients with heart failure with left bundle branch block. Heart. 2019;105:137–43.

    Google Scholar 

  126. Upadhyay GA, Vijayaraman P, Nayak HM, Verma N, Dandamudi G, Sharma PS, et al. On-treatment comparison between corrective His bundle pacing and biventricular pacing for cardiac resynchronization: a secondary analysis of the His-SYNC Pilot Trial. Heart Rhythm. 2019;16:1797–807.

    Article  Google Scholar 

  127. Upadhyay GA, Vijayaraman P, Nayak HM, Verma N, Dandamudi G, Sharma PS, et al. Letters His corrective pacing or biventricular pacing for cardiac resynchronization in heart failure. J Am Coll Cardiol. 2019;74:157–9.

    Article  Google Scholar 

  128. Vinther M, Risum N, Svendsen JH, Philbert BT. A randomized trial of His pacing versus biventricular pacing in symptomatic HF patients with left bundle branch block (His-alternative). JACC Clin Electrophysiol. 2021;7(11):1422-32.

    Article  Google Scholar 

  129. •• Gui Y, Ye L, Wu L, Mai H, Yan Q, Wang L. Clinical outcomes associated with His-Purkinje system pacing vs. biventricular pacing, in cardiac resynchronization therapy: a meta-analysis. Front Cardiovasc Med. 2022;9:707148. Findings from this meta-analysis of 18 studies showed that the His-Purkinje system pacing produced higher LVEF, shorter QRS duration, and higher NYHA functional class compared to traditional CRT at 9 months of follow-up.

  130. Sharma P, Dandamudi G, Herweg B, Wilson D, Singh R, Naperkowski A, et al. Permanent His bundle pacing for cardiac with heart failure and right bundle branch block. Heart Rhythm. 2018;11(9):e006613.

    Google Scholar 

  131. Shan P, Su L, Zhou X, Wu S, Xu L, Huang W. Beneficial effects of upgrading to His bundle pacing in chronically paced patients with left ventricular ejection. Heart Rhythm. 2017;15:405–12.

    Article  Google Scholar 

  132. Vijayaraman P, Herweg B, Dandamudi G, Mittal S, Bhatt AG, Marcantoni L, et al. Outcomes of His-bundle pacing upgrade after long-term right ventricular pacing and / or pacing-induced cardiomyopathy: insights into disease progression. Heart Rhythm. 2019;16:1554–61.

    Article  Google Scholar 

  133. Scheetz SD, Upadhyay GA. Physiologic pacing targeting the His bundle and left bundle branch: a review of the literature. Curr Cardiol Rep. 2022;24(8):959–78.

    Article  Google Scholar 

  134. Teigeler T, Kolominsky J, Vo C, Shepard RK, Kalahasty G, Kron J, et al. Intermediate-term performance and safety of His-bundle pacing leads: a single-center experience. Heart Rhythm. 2021;18:743–9.

    Article  Google Scholar 

  135. Beer D, Subzposh FA, Colburn S, Naperkowski A, Vijayaraman P. His bundle pacing capture threshold stability during long-term follow-up and correlation with lead slack. Europace. 2021;23(5):757–66.

    Article  Google Scholar 

  136. Li X, Qiu C, Xie R, Ma W, Wang Z, Li H, et al. Left bundle branch area pacing delivery of cardiac resynchronization therapy and comparison with biventricular pacing. ESC Heart Fail. 2020;7(4):1711–22.

    Article  Google Scholar 

  137. Wang Y, Gu K, Quian Z, Hou X, Chen X, Qiu Y, et al. The efficacy of left bundle branch area pacing compared with biventricular pacing in patients with heart failure: a matched case–control study. J Cardiovasc Electrophysiol. 2020;31(8):2068–77.

    Article  Google Scholar 

  138. Guo J, Meng F, Li L, Li Q, Xiao G, Chen S, et al. Remarkable response to cardiac resynchronization therapy via left bundle branch pacing in patients with true left bundle branch block. Clin Cardiol. 2020;43(12):1460–8.

    Article  Google Scholar 

  139. Huang W, Wu S, Vijayaraman P, Su L, Chen X, Cai B, et al. Cardiac resynchronization therapy in patients with nonischemic cardiomyopathy using left bundle branch pacing. JACC Clin Electrophysiol. 2020;6(7):849–58.

    Article  Google Scholar 

  140. Vijayarman P, Ponnusamy SS, Cano O, Sharma P, Naperkowski A, Subsposh F, et al. Left bundle branch area pacing for cardiac resynchronization therapy: results from the International LBBAP Collaborative Study Group. JACC Clin Electrophysiol. 2021;7(2):135–47.

    Article  Google Scholar 

  141. Wu S, Su L, Vijayaraman P, Zheng R, Cai M, Xu L, et al. Left bundle branch pacing for cardiac resynchronization therapy: nonrandomized on-treatment comparison with His bundle pacing and biventricular pacing. Can J Cardiol. 2021;37(2):319–28.

    Article  Google Scholar 

  142. Liu J, Sun F, Wang Z, Sun J, Jiang X, Zhao W. Left bundle branch area pacing vs. biventricular pacing for cardiac resynchronization therapy: A Meta-Analysis. Front Cardiovasc Med. 2021;8:669301. 

    Google Scholar 

  143. Hua J, Wang C, Kong Q, Zhang Y, Wang Q, Ziyi X, et al. Comparative effects of left bundle branch area pacing, His bundle pacing, biventricular pacing in patients requiring cardiac resynchronization therapy: A network meta-analysis. Clin Cardiol. 2022;45(2):214–23.

    Article  Google Scholar 

  144. • Vijayaraman P, Zalavadia D, Haseeb A, Dye C, Madan N, Skeete J, et al. Clinical outcomes of conduction system pacing compared to biventricular pacing in patients requiring cardiac resynchronization therapy. Heart Rhythm. 2022;19(8):1263–71. This large cohort study found improvement in composite clinical outcomes of death and heart failure hospitalization in patients with CSP compared to BVP.

    Article  Google Scholar 

  145. Vijayaraman P, Herweg B, Ellenbogen KA, Gajek J. His-optimized cardiac resynchronization therapy to maximize electrical resynchronization: a feasibility study. Circ Arrhythm Electrophysiol. 2019;12(2):e006934.

    Article  Google Scholar 

  146. Zweerink A, Zubarev S, Bakelants E, Potyagaylo D, Stettler C, Chmelevsky M, et al. His-optimized cardiac resynchronization therapy with ventricular fusion pacing for electrical resynchronization in heart failure. JACC Clin Electrophysiol. 2021;7(7):881–92.

    Article  Google Scholar 

  147. Jastrzębski M, Moskal P, Huybrechts W, Curila K, Sreekumar P, Rademakers LM, et al. Left bundle branch–optimized cardiac resynchronization therapy (LOT-CRT): results from an international LBBAP collaborative study group. Heart Rhythm. 2022;19:13–21.

    Article  Google Scholar 

  148. Salden F, Luermans J, Westra S, Weijs B, Engels E, Heckman L, et al. Short-term hemodynamic and electrophysiological effects of cardiac resynchronization by left ventricular septal pacing. J Am Coll Cardiol. 2020;75(4):347–59.

    Article  Google Scholar 

  149. Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Europace. 2019;21:1143–4.

    Article  Google Scholar 

  150. Zang M, Zhang T, Mao J, Zhou S, He B. Beneficial effects of catheter ablation of frequent premature ventricular complexes on left ventricular function. Heart. 2014;100:787–93.

    Article  Google Scholar 

  151. Latchamsetty R, Yokokawa M, Morady F, Kim HM, Mathew S, Tilz R, et al. Multicenter outcomes for catheter ablation of idiopathic premature ventricular complexes. JACC Clin Electrophysiol. 2015;1(3):116–23.

    Article  Google Scholar 

  152. Lamba J, Redfearn DP, Michael KA, Simpson CS, Abdollah H, Baranchuk A. Radiofrequency catheter ablation for the treatment of idiopathic premature ventricular contractions originating from the right ventricular outflow tract: a systematic review and meta-analysis. Pacing Clin Electrophysiol. 2014;37(1):73–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad B. Pavri.

Ethics declarations

Conflict of Interest

Sean J Dikdan has nothing to disclose. Michael Lawrenz Co reports travel support to HRS 2022 from Biotronik. Behzad B. Pavri reports they are a consultant for Medtronic; also Medtronic annually provides financial support towards the EP fellowship program at TJUH.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikdan, S.J., Co, M.L. & Pavri, B.B. Dyssynchronous Heart Failure: A Clinical Review. Curr Cardiol Rep 24, 1957–1972 (2022). https://doi.org/10.1007/s11886-022-01797-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-022-01797-z

Keywords

Navigation