Skip to main content

Advertisement

Log in

Prevention and Management of AKI in ACS Patients Undergoing Invasive Treatments

  • Management of Acute Coronary Syndromes (H Jneid, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Management of patients presenting with acute coronary syndrome (ACS) includes invasive procedures that may increase the risk of acute kidney injury (AKI). AKI adversely affects the outcomes of such procedures and complicates the management of ACS. We have summarized several strategies for the prevention and management of AKI in this critical patient group including in the pre-procedural, intraprocedural, and post-procedural settings.

Recent Findings

Definitive prevention and management strategies for AKI in patients presenting with ACS requiring invasive management can be confounded by the variation in data outcomes.

Summary

Pre-procedural hydration with normal saline when accounting for time to catheterization, radial artery access, contrast stewardship, and close monitoring of renal function after catheterization should be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CT:

Computerized tomographic

MRI:

Magnetic resonance imaging

CIN:

Contrast induced nephropathy

CA-AKI:

Contrast associated acute kidney injury

AKI:

Acute kidney injury

ACS:

Acute coronary syndrome

RIFLE:

Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease

AKIN:

Acute Kidney Injury Network

GFR:

Glomerular filtration rate

PCI:

Percutaneous coronary intervention

CAD:

Coronary artery disease

VA-ECMO:

Veno-arterial extracorporeal membrane oxygenation

pLVAD:

Percutaneous left ventricular assist device

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2016;4(13):256. https://doi.org/10.21037/atm.2016.06.33.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Torio C, Moore B. National inpatient hospital costs: the most expensive conditions by payer, 2013. HCUP Statistical Brief #204. May 2016. Rockville, MD. Agency for Healthcare Research and Quality. 2013. Available at: https://www.hcup-us.ahrq.gov/reports/statbriefs/sb204-Most-Expensive-Hospital-Conditions.jsp. Accessed February 1st, 2022.

  3. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB; American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 2016;133(4):e38–360. https://doi.org/10.1161/CIR.0000000000000350. Epub 2015 Dec 16. Erratum in: Circulation. 2016 Apr 12;133(15):e599.

  4. Chui PW, Parzynski CS, Ross JS, Desai NR, Gurm HS, Spertus JA, Seto AH, Ho V, Curtis JP. Association of statewide certificate of need regulations with percutaneous coronary intervention appropriateness and outcomes. J Am Heart Assoc. 2019;8(2): e010373. https://doi.org/10.1161/JAHA.118.010373.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Murphy SW, Barrett BJ, Parfrey PS. Contrast nephropathy. J Am Soc Nephrol. 2000;11(1):177–82. https://doi.org/10.1681/ASN.V111177.

    Article  PubMed  Google Scholar 

  6. Mehran R, Dangas GD, Weisbord SD. Contrast-associated acute kidney injury. N Engl J Med. 2019;380(22):2146–55. https://doi.org/10.1056/NEJMra1805256. PMID: 31141635.

    Article  PubMed  CAS  Google Scholar 

  7. Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39(5):930–6. https://doi.org/10.1053/ajkd.2002.32766.

    Article  PubMed  Google Scholar 

  8. Caixeta A, Nikolsky E, Mehran R. Prevention and treatment of contrast-associated nephropathy in interventional cardiology. Curr Cardiol Rep. 2009;11(5):377–83. https://doi.org/10.1007/s11886-009-0052-6. PMID: 19709498.

    Article  PubMed  Google Scholar 

  9. Lun Z, Liu L, Chen G, Ying M, Liu J, Wang B, Liang J, Yang Y, Chen S, He Y, Chung EYM, Chen J, Ye J, Liu Y. The global incidence and mortality of contrast-associated acute kidney injury following coronary angiography: a meta-analysis of 1.2 million patients. J Nephrol. 2021;34(5):1479–1489. https://doi.org/10.1007/s40620-021-01021-1. Epub 2021 Jun 2. Erratum in: J Nephrol. 2021 Jun 17;: PMID: 34076881; PMCID: PMC8494686.

  10. Lopes JA, Jorge S. The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clin Kidney J. 2013;6(1):8–14. https://doi.org/10.1093/ckj/sfs160. Epub 2012 Jan 1.

    Article  PubMed  Google Scholar 

  11. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute Dialysis Quality Initiative workgroup. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12. https://doi.org/10.1186/cc2872. Epub 2004 May 24.

  12. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A. Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31. https://doi.org/10.1186/cc5713.

  13. Lin CY, Chen YC. Acute kidney injury classification: AKIN and RIFLE criteria in critical patients. World J Crit Care Med. 2012;1(2):40–5. https://doi.org/10.5492/wjccm.v1.i2.40.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thomas ME, Blaine C, Dawnay A, Devonald MA, Ftouh S, Laing C, Latchem S, Lewington A, Milford DV, Ostermann M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015;87(1):62–73. https://doi.org/10.1038/ki.2014.328. Epub 2014 Oct 15 PMID: 25317932.

    Article  PubMed  Google Scholar 

  15. Faggioni M, Mehran R. Preventing contrast-induced renal failure: a guide. Interv Cardiol. 2016;11(2):98–104. https://doi.org/10.15420/icr.2016:10:2.PMID:29588714;PMCID:PMC5808627.

    Article  PubMed  PubMed Central  Google Scholar 

  16. McCullough PA. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2008 Apr 15;51(15):1419-28. https://doi.org/10.1016/j.jacc.2007.12.035. Erratum in: J Am Coll Cardiol. 2008;51(22): 2197.

  17. Katzberg RW. Contrast medium-induced nephrotoxicity: which pathway? Radiology. 2005;235(3):752–5. https://doi.org/10.1148/radiol.2353041865.

    Article  PubMed  Google Scholar 

  18. Caiazza A, Russo L, Sabbatini M, Russo D. Hemodynamic and tubular changes induced by contrast media. Biomed Res Int. 2014;2014: 578974. https://doi.org/10.1155/2014/578974. Epub 2014 Feb 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Katholi RE, Taylor GJ, McCann WP, Woods WT Jr, Womack KA, McCoy CD, Katholi CR, Moses HW, Mishkel GJ, Lucore CL, et al. Nephrotoxicity from contrast media: attenuation with theophylline. Radiology. 1995;195(1):17–22. https://doi.org/10.1148/radiology.195.1.7892462.

    Article  PubMed  CAS  Google Scholar 

  20. Katholi RE, Woods WT Jr, Taylor GJ, Deitrick CL, Womack KA, Katholi CR, McCann WP. Oxygen free radicals and contrast nephropathy. Am J Kidney Dis. 1998;32(1):64–71. https://doi.org/10.1053/ajkd.1998.v32.pm9669426.

    Article  PubMed  CAS  Google Scholar 

  21. Kooiman J, Seth M, Dixon S, Wohns D, LaLonde T, Rao SV, Gurm HS. Risk of acute kidney injury after percutaneous coronary interventions using radial versus femoral vascular access: insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium. Circ Cardiovasc Interv. 2014;7(2):190–8. https://doi.org/10.1161/CIRCINTERVENTIONS.113.000778. Epub 2014 Feb 25.

    Article  PubMed  Google Scholar 

  22. Ghane Shahrbaf F, Assadi F. Drug-induced renal disorders. J Renal Inj Prev. 2015;4(3):57–60. https://doi.org/10.12861/jrip.2015.12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Toprak O, Cirit M. Risk factors for contrast-induced nephropathy. Kidney Blood Press Res. 2006;29(2):84–93. https://doi.org/10.1159/000093381. Epub 2006 May 16.

    Article  PubMed  Google Scholar 

  24. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, Mintz GS, Lansky AJ, Moses JW, Stone GW, Leon MB, Dangas G. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9. https://doi.org/10.1016/j.jacc.2004.06.068.

    Article  PubMed  Google Scholar 

  25. Lin KY, Zheng WP, Bei WJ, Chen SQ, Islam SM, Liu Y, Xue L, Tan N, Chen JY. A novel risk score model for prediction of contrast-induced nephropathy after emergent percutaneous coronary intervention. Int J Cardiol. 2017;1(230):402–12. https://doi.org/10.1016/j.ijcard.2016.12.095. Epub 2016 Dec 26.

    Article  Google Scholar 

  26. Andò G, Morabito G, de Gregorio C, Trio O, Saporito F, Oreto G. The ACEF score as predictor of acute kidney injury in patients undergoing primary percutaneous coronary intervention. Int J Cardiol. 2013;168(4):4386–7. https://doi.org/10.1016/j.ijcard.2013.05.049. Epub 2013 May 24.

    Article  PubMed  Google Scholar 

  27. Tziakas D, Chalikias G, Stakos D, Altun A, Sivri N, Yetkin E, Gur M, Stankovic G, Mehmedbegovic Z, Voudris V, Chatzikyriakou S, Garcia-Moll X, Serra A, Passadakis P, Thodis E, Vargemezis V, Kaski JC, Konstantinides S. Validation of a new risk score to predict contrast-induced nephropathy after percutaneous coronary intervention. Am J Cardiol. 2014;113(9):1487–93. https://doi.org/10.1016/j.amjcard.2014.02.004. Epub 2014 Feb 12.

    Article  PubMed  Google Scholar 

  28. Tsai TT, Patel UD, Chang TI, Kennedy KF, Masoudi FA, Matheny ME, Kosiborod M, Amin AP, Weintraub WS, Curtis JP, Messenger JC, Rumsfeld JS, Spertus JA. Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the National Cardiovascular Data Registry Cath-PCI Registry. J Am Heart Assoc. 2014;3(6): e001380. https://doi.org/10.1161/JAHA.114.001380.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, Khot UN, Lange RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Nallamothu BK, Ting HH. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011;124:e574–651. https://doi.org/10.1161/CIR.0b013e31823ba622.

    Article  PubMed  Google Scholar 

  30. Kolh P, Windecker S. ESC/EACTS myocardial revascularization guidelines 2014. Eur Heart J. 2014;35:3235–6. https://doi.org/10.1093/eurheartj/ehu422.

    Article  PubMed  Google Scholar 

  31. Brar SS, Aharonian V, Mansukhani P, Moore N, Shen AY, Jorgensen M, Dua A, Short L, Kane K. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet. 2014;383(9931):1814–23. https://doi.org/10.1016/S0140-6736(14)60689-9.

    Article  PubMed  Google Scholar 

  32. Qian G, Fu Z, Guo J, Cao F, Chen Y. Prevention of contrast-induced nephropathy by central venous pressure-guided fluid administration in chronic kidney disease and congestive heart failure patients. JACC Cardiovasc Interv. 2016;9(1):89–96. https://doi.org/10.1016/j.jcin.2015.09.026. Epub 2015 Dec 9.

    Article  PubMed  Google Scholar 

  33. Fishbane S. N-acetylcysteine in the prevention of contrast-induced nephropathy. Clin J Am Soc Nephrol. 2008;3(1):281–7. https://doi.org/10.2215/CJN.02590607. Epub 2007 Nov 14.

    Article  PubMed  CAS  Google Scholar 

  34. Xu R, Tao A, Bai Y, Deng Y, Chen G. Effectiveness of N-acetylcysteine for the prevention of contrast-induced nephropathy: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2016;5(9): e003968. https://doi.org/10.1161/JAHA.116.003968.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brar SS, Hiremath S, Dangas G, Mehran R, Brar SK, Leon MB. Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4(10):1584–92. https://doi.org/10.2215/CJN.03120509. Epub 2009 Aug 27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. •• Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, Conner TA, Chertow GM, Bhatt DL, Shunk K, Parikh CR, McFalls EO, Brophy M, Ferguson R, Wu H, Androsenko M, Myles J, Kaufman J, Palevsky PM; PRESERVE Trial Group. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med. 2018;378(7):603–614. https://doi.org/10.1056/NEJMoa1710933. Epub 2017 Nov 12. In this landmark trial by the PRESERVE group, they compare intravenous sodium bicarbonate versus intravenous sodium chloride and 5 days of oral acetylcysteine versus placebo in patients with high risk for renal complications. They found no benefit in regard to prevention of death, need for dialysis, or persistent decline in kidney function. They also found no significance between group differences in prevention of CIN.

  37. Garcia S, Bhatt DL, Gallagher M, Jneid H, Kaufman J, Palevsky PM, Wu H, Weisbord SD; PRESERVE Trial Group. Strategies to reduce acute kidney injury and improve clinical outcomes following percutaneous coronary intervention: a subgroup analysis of the PRESERVE trial. JACC Cardiovasc Interv. 2018;11(22):2254–2261. https://doi.org/10.1016/j.jcin.2018.07.044. PMID: 30466822.

  38. • Writing Committee Members, Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, Bittl JA, Cohen MG, DiMaio JM, Don CW, Fremes SE, Gaudino MF, Goldberger ZD, Grant MC, Jaswal JB, Kurlansky PA, Mehran R, Metkus TS Jr, Nnacheta LC, Rao SV, Sellke FW, Sharma G, Yong CM, Zwischenberger BA. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022;79(2):e21-e129. https://doi.org/10.1016/j.jacc.2021.09.006. Epub 2021 Dec 9. This 2021 joint cardiovascular society guidelines highlights important findings in regard to the use of statin therapy in preventing CIN. They also discuss risk of contrast nephropathy when accounting for culprit only PCI versus multivessel PCI.

  39. Waheed S, Choi MJ. Trials and tribulations of diagnosing and preventing contrast-induced acute kidney injury. J Thorac Cardiovasc Surg. 2021;162(5):1581–6. https://doi.org/10.1016/j.jtcvs.2020.06.147. Epub 2020 Jul 31 PMID: 33218765.

    Article  PubMed  Google Scholar 

  40. Bangalore S, Barsness GW, Dangas GD, Kern MJ, Rao SV, Shore-Lesserson L, Tamis-Holland JE. Evidence-based practices in the cardiac catheterization laboratory: a scientific statement from the American Heart Association. Circulation. 2021;144(5):e107–19. https://doi.org/10.1161/CIR.0000000000000996. Epub 2021 Jun 30 PMID: 34187171.

    Article  PubMed  Google Scholar 

  41. Davidson C, Stacul F, McCullough PA, Tumlin J, Adam A, Lameire N, Becker CR. CIN Consensus Working Panel. Contrast medium use Am J Cardiol. 2006;98(6A):42K-58K. https://doi.org/10.1016/j.amjcard.2006.01.023. Epub 2006 Mar 2.

    Article  PubMed  CAS  Google Scholar 

  42. Zhao F, Lei R, Yang SK, Luo M, Cheng W, Xiao YQ, Li XW, Guo J, Duan SB. Comparative effect of iso-osmolar versus low-osmolar contrast media on the incidence of contrast-induced acute kidney injury in diabetic patients: a systematic review and meta-analysis. Cancer Imaging. 2019;19(1):38. https://doi.org/10.1186/s40644-019-0224-6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Harfouch B, Prasad A. The use of ultra low contrast volume during percutaneous coronary intervention and risk of acute kidney injury: how low can we go? Catheter Cardiovasc Interv. 2019;93(2):231–2. https://doi.org/10.1002/ccd.28090.

    Article  PubMed  Google Scholar 

  44. Gurm HS, Seth M, Dixon SR, Michael Grossman P, Sukul D, Lalonde T, Cannon L, West D, Madder RD, Adam LD. Contemporary use of and outcomes associated with ultra-low contrast volume in patients undergoing percutaneous coronary interventions. Catheter Cardiovasc Interv. 2019;93(2):222–30. https://doi.org/10.1002/ccd.27819. Epub 2018 Aug 25.

    Article  PubMed  Google Scholar 

  45. Kronzon I, Saric M. Cholesterol embolization syndrome. Circulation. 2010;122(6):631–41. https://doi.org/10.1161/CIRCULATIONAHA.109.886465.

    Article  PubMed  Google Scholar 

  46. Georges JL, Belle L, Meunier L, Dechery T, Khalifé K, Pecheux M, Elhaddad S, Amabile N, Pansieri M, Ballout J, Marchand X, Rouault G, Leddet P, Nugue O, Lucke N, Cattan S; RAY’ACT Investigators. Radial versus femoral access for coronary angiography and intervention is associated with lower patient radiation exposure in high-radial-volume centres: insights from the RAY'ACT-1 study. Arch Cardiovasc Dis. 2017;110(3):179–187. https://doi.org/10.1016/j.acvd.2016.09.002. Epub 2017 Jan 20.

  47. Fukumoto Y, Tsutsui H, Tsuchihashi M, Masumoto A, Takeshita A; Cholesterol Embolism Study(CHEST) Investigators. The incidence and risk factors of cholesterol embolization syndrome, a complication of cardiac catheterization: a prospective study. J Am Coll Cardiol. 2003;42(2):211–6. https://doi.org/10.1016/s0735-1097(03)00579-5.

  48. Andò G, Cortese B, Russo F, Rothenbühler M, Frigoli E, Gargiulo G, Briguori C, Vranckx P, Leonardi S, Guiducci V, Belloni F, Ferrari F, de la Torre Hernandez JM, Curello S, Liistro F, Perkan A, De Servi S, Casu G, Dellavalle A, Fischetti D, Micari A, Loi B, Mangiacapra F, Russo N, Tarantino F, Saia F, Heg D, Windecker S, Jüni P, Valgimigli M; MATRIX Investigators. Acute kidney injury after radial or femoral access for invasive acute coronary syndrome management: AKI-MATRIX. J Am Coll Cardiol. 2017:S0735–1097(17)36897–3. https://doi.org/10.1016/j.jacc.2017.02.070. Epub ahead of print.

  49. Ohno Y, Maekawa Y, Miyata H, Inoue S, Ishikawa S, Sueyoshi K, Noma S, Kawamura A, Kohsaka S, Fukuda K. Impact of periprocedural bleeding on incidence of contrast-induced acute kidney injury in patients treated with percutaneous coronary intervention. J Am Coll Cardiol. 2013;62(14):1260–6. https://doi.org/10.1016/j.jacc.2013.03.086. Epub 2013 Jun 12.

    Article  PubMed  Google Scholar 

  50. Hamon M, Mehta S, Steg PG, Faxon D, Kerkar P, Rupprecht HJ, Tanguay JF, Afzal R, Yusuf S. Impact of transradial and transfemoral coronary interventions on bleeding and net adverse clinical events in acute coronary syndromes. EuroIntervention. 2011;7(1):91–7. https://doi.org/10.4244/EIJV7I1A16.

    Article  PubMed  Google Scholar 

  51. Rao SV, Ou FS, Wang TY, Roe MT, Brindis R, Rumsfeld JS, Peterson ED. Trends in the prevalence and outcomes of radial and femoral approaches to percutaneous coronary intervention: a report from the National Cardiovascular Data Registry. JACC Cardiovasc Interv. 2008;1(4):379–86. https://doi.org/10.1016/j.jcin.2008.05.007.

    Article  PubMed  Google Scholar 

  52. Mariani J Jr, Guedes C, Soares P, Zalc S, Campos CM, Lopes AC, Spadaro AG, Perin MA, Filho AE, Takimura CK, Ribeiro E, Kalil-Filho R, Edelman ER, Serruys PW, Lemos PA. Intravascular ultrasound guidance to minimize the use of iodine contrast in percutaneous coronary intervention: the MOZART (minimizing contrast utilization with IVUS guidance in coronary angioplasty) randomized controlled trial. JACC Cardiovasc Interv. 2014;7(11):1287–93. https://doi.org/10.1016/j.jcin.2014.05.024. Epub 2014 Oct 15.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ali ZA, Karimi Galougahi K, Nazif T, Maehara A, Hardy MA, Cohen DJ, Ratner LE, Collins MB, Moses JW, Kirtane AJ, Stone GW, Karmpaliotis D, Leon MB. Imaging- and physiology-guided percutaneous coronary intervention without contrast administration in advanced renal failure: a feasibility, safety, and outcome study. Eur Heart J. 2016;37(40):3090–5. https://doi.org/10.1093/eurheartj/ehw078. Epub 2016 Mar 7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. • Liu ZY, Yin ZH, Liang CY, He J, Wang CL, Peng X, Zhang Y, Zheng ZF, Pan HW. Zero contrast optical coherence tomography-guided percutaneous coronary intervention in patients with non-ST segment elevation myocardial infarction and chronic kidney disease. Catheter Cardiovasc Interv. 2021;97 Suppl 2:1072–1079. https://doi.org/10.1002/ccd.29655. Epub 2021 Mar 25. In this study of 29 patients with NSTEMI and CKD, ultra-low volume contrast PCI was performed. Coronary angiography was completed with minimal contrast using zero contrast OCT. The authors found that PCI performed with no contrast OCT guided ultra-low contrast is safe.

  55. Minsinger KD, Kassis HM, Block CA, Sidhu M, Brown JR. Meta-analysis of the effect of automated contrast injection devices versus manual injection and contrast volume on risk of contrast-induced nephropathy. Am J Cardiol. 2014;113(1):49–53. https://doi.org/10.1016/j.amjcard.2013.08.040. Epub 2013 Oct 3. PMID: 24188890; PMCID: PMC4848037.

  56. Desch S, Fuernau G, Pöss J, Meyer-Saraei R, Saad M, Eitel I, Thiele H, de Waha S. Impact of a novel contrast reduction system on contrast savings in coronary angiography - the DyeVert randomised controlled trial. Int J Cardiol. 2018;15(257):50–3. https://doi.org/10.1016/j.ijcard.2017.12.107. Epub 2018 Jan 2 PMID: 29373136.

    Article  Google Scholar 

  57. Alessandri N, Lanzi L, Garante CM, Tersigni F, Sergiacomi R, Petrassi M, Di Matteo A, Tufano F. Prevention of acute renal failure post-contrast imaging in cardiology: a randomized study. Eur Rev Med Pharmacol Sci. 2013;17(Suppl 1):13–21.

    PubMed  Google Scholar 

  58. Bei W, Li H, Lin K, Wang K, Chen S, Guo X, Liu Y, Tan N, Chen J; TRUST investigators. Post-hoc study: intravenous hydration treatment in Chinese patients with high risk of contrast-induced nephropathy following percutaneous coronary intervention. Sci Rep. 2017;7:45023. https://doi.org/10.1038/srep45023.

  59. Cirit M, Toprak O, Yesil M, Bayata S, Postaci N, Pupim L, Esi E. Angiotensin-converting enzyme inhibitors as a risk factor for contrast-induced nephropathy. Nephron Clin Pract. 2006;104(1):c20–7. https://doi.org/10.1159/000093255. Epub 2006 May 9.

    Article  PubMed  CAS  Google Scholar 

  60. Hölscher B, Heitmeyer C, Fobker M, Breithardt G, Schaefer RM, Reinecke H. Predictors for contrast media-induced nephropathy and long-term survival: prospectively assessed data from the randomized controlled Dialysis-Versus-Diuresis (DVD) trial. Can J Cardiol. 2008;24(11):845–50. https://doi.org/10.1016/s0828-282x(08)70193-4.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dangas GD, George JC, Weintraub W, Popma JJ. Timing of staged percutaneous coronary intervention in multivessel coronary artery disease. JACC Cardiovasc Interv. 2010;3(10):1096–9. https://doi.org/10.1016/j.jcin.2010.09.005.

    Article  PubMed  Google Scholar 

  62. Shah M, Gajanana D, Wheeler DS, Punjabi C, Maludum O, Mezue K, Lerma EV, Ardati A, Romero-Corral A, Witzke C, Rangaswami J. Effects of staged versus ad hoc percutaneous coronary interventions on renal function-is there a benefit to staging? Cardiovasc Revasc Med. 2017;18(5):344–348. https://doi.org/10.1016/j.carrev.2017.02.017. Epub 2017 Feb 28.

  63. Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD, Buller CE, Jacobs AK, Slater JN, Col J, McKinlay SM, LeJemtel TH. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med. 1999;341(9):625–34. https://doi.org/10.1056/NEJM199908263410901.

  64. Thiele H, Akin I, Sandri M, Fuernau G, de Waha S, Meyer-Saraei R, Nordbeck P, Geisler T, Landmesser U, Skurk C, Fach A, Lapp H, Piek JJ, Noc M, Goslar T, Felix SB, Maier LS, Stepinska J, Oldroyd K, Serpytis P, Montalescot G, Barthelemy O, Huber K, Windecker S, Savonitto S, Torremante P, Vrints C, Schneider S, Desch S, Zeymer U; CULPRIT-SHOCK Investigators. PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med. 2017;377(25):2419–2432. https://doi.org/10.1056/NEJMoa1710261. Epub 2017 Oct 30.

  65. Austin D, McCanny P, Aneman A. Post-operative renal failure management in mechanical circulatory support patients. Ann Transl Med. 2020;8(13):833. https://doi.org/10.21037/atm-20-1172.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Krishna M, Zacharowski K. Principles of intra-aortic balloon pump counterpulsation. Continuing Education in Anaesthesia Critical Care & Pain. 2009;9(1):24–8. https://doi.org/10.1093/bjaceaccp/mkn051.

    Article  Google Scholar 

  67. Rios SA, Bravo CA, Weinreich M, Olmedo W, Villablanca P, Villela MA, Ramakrishna H, Hirji S, Robles OA, Mahato P, Gluud C, Bhatt DL, Jorde UP. Meta-analysis and trial sequential analysis comparing percutaneous ventricular assist devices versus intra-aortic balloon pump during high-risk percutaneous coronary intervention or cardiogenic shock. Am J Cardiol. 2018;122(8):1330–8. https://doi.org/10.1016/j.amjcard.2018.07.011. Epub 2018 Jul 24.

    Article  PubMed  Google Scholar 

  68. Flaherty MP, Moses JW, Westenfeld R, Palacios I, O’Neill WW, Schreiber TL, Lim MJ, Kaki A, Ghiu I, Mehran R. Impella support and acute kidney injury during high-risk percutaneous coronary intervention: The Global cVAD Renal Protection Study. Catheter Cardiovasc Interv. 2020;95(6):1111–21. https://doi.org/10.1002/ccd.28400. Epub 2019 Jul 29.

    Article  PubMed  Google Scholar 

  69. Gruberg L, Mehran R, Dangas G, Mintz GS, Waksman R, Kent KM, Pichard AD, Satler LF, Wu H, Leon MB. Acute renal failure requiring dialysis after percutaneous coronary interventions. Catheter Cardiovasc Interv. 2001;52(4):409–16. https://doi.org/10.1002/ccd.1093.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception, drafting, and review of this manuscript and meet ICJME criteria for authorship.

Corresponding author

Correspondence to Syed Gilani.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Management of Acute Coronary Syndromes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakker, R.A., Albaeni, A., Alwash, H. et al. Prevention and Management of AKI in ACS Patients Undergoing Invasive Treatments. Curr Cardiol Rep 24, 1299–1307 (2022). https://doi.org/10.1007/s11886-022-01742-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-022-01742-0

Keywords

Navigation