Skip to main content

Delving into the Molecular World of Single Ventricle Congenital Heart Disease


Purpose of Review

Given a general lack of emphasis on the molecular underpinnings of single ventricle (SV) congenital heart diseases (CHD), our review highlights and summarizes recent advances in uncovering the genetic and molecular mechanisms in SV CHD etiology.

Recent Findings

While common SV-associated genetic mutations were found in key cardiac transcription factors, other mutations were sporadic. With advances in genetic sequencing technologies and animal models, more disease-associated factors have been identified to act in critical cardiac signaling pathways such as NOTCH, Wnt, and TGF signaling. Recent studies have also revealed that different cardiac lineages play different roles in disease pathogenesis.


SV defects are attributed to complex combinations of genetic mutations, indicating that sophisticated spatiotemporal regulation of gene transcription networks and functional cellular pathways govern disease progression. Future studies will warrant in-depth investigations into better understanding how different genetic factors converge to influence common downstream cellular pathways, resulting in SV abnormalities.

This is a preview of subscription content, access via your institution.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    PubMed  Article  Google Scholar 

  2. Rao PS. Single ventricle—a comprehensive review. Children. 2021;8:441.

    PubMed  PubMed Central  Article  Google Scholar 

  3. O’Leary PW. Prevalence, clinical presentation and natural history of patients with single ventricle. Prog Pediatr Cardiol. 2002;16:31–8.

    Article  Google Scholar 

  4. Hedlund E, Lundell B. Fontan circulation has improved life expectancy for infants born with complex heart disease over the last 50 years but has also resulted in significant morbidity. Acta Paediatr. 2021;111(1):11–6.

    Article  PubMed  Google Scholar 

  5. Zaidi S, Brueckner M. Genetics and genomics of congenital heart disease. Circ Res. 2017;120:923–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK, Carriero NJ, Cheung YH, Deanfield J, Depalma S, Fakhro KA, Glessner J, Hakonarson H, Italia MJ, Kaltman JR, Kaski J, Kim R, Kline JK, Lee T, Leipzig J, Lopez A, Mane SM, Mitchell LE, Newburger JW, Parfenov M, Pe’Er I, Porter G, Roberts AE, Sachidanandam R, Sanders SJ, Seiden HS, State MW, Subramanian S, Tikhonova IR, Wang W, Warburton D, White PS, Williams IA, Zhao H, Seidman JG, Brueckner M, Chung WK, Gelb BD, Goldmuntz E, Seidman CE and Lifton RP. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498:220–223.

  7. Toubat O, Kumar SR. Molecular approaches in single ventricle management. Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual. 2020;23:77–85.

    PubMed  Article  Google Scholar 

  8. Obler D, Juraszek AL, Smoot LB, Natowicz MR. Double outlet right ventricle: aetiologies and associations. J Med Genet. 2008;45:481–97.

    CAS  PubMed  Article  Google Scholar 

  9. • Garcia AM, Beatty J-T and Nakano SJ. Heart failure in single right ventricle congenital heart disease: physiological and molecular considerations. Am J Physiol-Heart Circ Physiol. 2020;318:H947-H965. This review article provides a detailed and comprehensive overview of the clinical and physiological aspects of SV CHD.

  10. Alsoufi B, McCracken C, Kanter K, Shashidharan S, Kogon B. Current results of single ventricle palliation of patients with double inlet left ventricle. Ann Thorac Surg. 2017;104:2064–71.

    PubMed  Article  Google Scholar 

  11. Park WK, Baek JS, Kwon BS, Im YM, Lee JH, Choi ES, Park CS, Yun T-J. Revisitation of double-inlet left ventricle or tricuspid atresia with transposed great arteries. Ann Thorac Surg. 2019;107:1212–7.

    PubMed  Article  Google Scholar 

  12. Vyas H, Hagler DJ. Double inlet left ventricle. Curr Treat Options Cardiovasc Med. 2007;9:391–8.

    PubMed  Article  Google Scholar 

  13. Jiao K, Langworthy M, Batts L, Brown CB, Moses HL, Baldwin HS. Tgfβ signaling is required for atrioventricular cushion mesenchyme remodeling during in vivo cardiac development. Development. 2006;133:4585–93.

    CAS  PubMed  Article  Google Scholar 

  14. Svensson EC, Huggins GS, Lin H, Clendenin C, Jiang F, Tufts R, Dardik FB, Leiden JM. A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding Fog-2. Nat Genet. 2000;25:353–6.

    CAS  PubMed  Article  Google Scholar 

  15. Wu B, Wang Y, Lui W, Langworthy M, Tompkins KL, Hatzopoulos AK, Baldwin HS, Zhou B. Nfatc1 Coordinates valve endocardial cell lineage development required for heart valve formation. Circ Res. 2011;109:183–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Abdul-Sater Z, Yehya A, Beresian J, Salem E, Kamar A, Baydoun S, Shibbani K, Soubra A, Bitar F and Nemer G. Two Heterozygous Mutations in NFATC1 in a Patient with Tricuspid Atresia. PLoS One. 2012;7:e49532.

  17. Nozari A, Aghaei-Moghadam E, Zeinaloo A, et al. A Pathogenic homozygous mutation in the pleckstrin homology domain of RASA1 is responsible for familial tricuspid atresia in an Iranian consanguineous family. Cell J. 2019;21(1):70–7.

  18. Tsuchihashi T, Maeda J, Shin CH, Ivey KN, Black BL, Olson EN, Yamagishi H, Srivastava D. Hand2 function in second heart field progenitors is essential for cardiogenesis. Dev Biol. 2011;351:62–9.

    CAS  PubMed  Article  Google Scholar 

  19. VanDusen NJ, Casanovas J, Vincentz Joshua W, Firulli Beth A, Osterwalder M, Lopez-Rios J, Zeller R, Zhou B, Grego-Bessa J, De La Pompa JL, Shou W, Firulli AB. Hand2 is an essential regulator for two notch-dependent functions within the embryonic endocardium. Cell Rep. 2014;9:2071–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Donovan J, Kordylewska A, Jan YN, Utset MF. Tetralogy of Fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol. 2002;12:1605–10.

    CAS  PubMed  Article  Google Scholar 

  21. Seya D, Ihara D, Shirai M, Kawamura T, Watanabe Y, Nakagawa O. A role of Hey2 transcription factor for right ventricle development through regulation of Tbx2-Mycn pathway during cardiac morphogenesis. Dev Growth Differ. 2021;63:82–92.

    CAS  PubMed  Article  Google Scholar 

  22. Tian Y, Yuan L, Goss AM, Wang T, Yang J, Lepore JJ, Zhou D, Schwartz RJ, Patel V, Cohen ED, Morrisey EE. Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development. Dev Cell. 2010;18:275–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Gillers BS, Chiplunkar A, Aly H, Valenta T, Basler K, Christoffels VM, Efimov IR, Boukens BJ, Rentschler S. Canonical Wnt signaling regulates atrioventricular junction programming and electrophysiological properties. Circ Res. 2015;116:398–406.

    CAS  PubMed  Article  Google Scholar 

  24. Goldmuntz E, Bamford R, Karkera JD, Cruz Jd, Roessler E, Muenke M. CFC1 Mutations in patients with transposition of the great arteries and double-outlet right ventricle. Am J Hum Genet. 2002;70:776–780.

  25. Cao R, Long F, Wang L, Xu Y, Guo Y, Li F, Chen S, Sun K, Xu R. Duplication and deletion of CFC1 associated with heterotaxy syndrome. DNA Cell Biol. 2015;34:101–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Bamford RN, Roessler E, Burdine RD, Saplakoğlu U, Dela Cruz J, Splitt M, Goodship JA, Towbin J, Bowers P, Ferrero GB, Marino B, Schier AF, Shen MM, Muenke M, Casey B. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet. 2000;26:365-369.

  27. Özcelik C, Bit-Avragim N, Panek A, Gaio U, Geier C, Lange PE, Dietz R, Posch MG, Perrot A, Stiller B. Mutations in the EGF-CFC gene cryptic are an infrequent cause of congenital heart disease. Pediatr Cardiol. 2006;27:695–8.

    PubMed  Article  Google Scholar 

  28. Desgrange A, Le Garrec J-F, Meilhac SM. Left-right asymmetry in heart development and disease: forming the right loop. Development. 2018;145.

  29. • Yamak A, Hu D, Mittal N, Buikema JW, Ditta S, Lutz PG, Moog-Lutz C, Ellinor PT, Domian IJ. Loss of Asb2 impairs cardiomyocyte differentiation and leads to congenital double outlet right ventricle. iScience. 2020;23:100959. This study is the first to investigate the role of Asb2, a subunit of Cullin5 Ub ligase in the pathogenesis of DORV using Asb2 conditional knockout mice. They showed that Asb2 is critical for cardiac development and Asb2 mutant mice exhibited DORV phenotypes.

  30. Kasahara H, Lee B, Schott J-J, Benson DW, Seidman JG, Seidman CE, Izumo S. Loss of function and inhibitory effects of human CSX/NKX2.5 homeoprotein mutations associated with congenital heart disease. J Clin Invest. 2000;106:299–308.

  31. McElhinney DB, Geiger E, Blinder J, Woodrow Benson D, Goldmuntz E. NKX2.5mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003;42:1650–1655.

  32. Sun Y-M, Wang J, Qiu X-B, Yuan F, Li R-G, Xu Y-J, Qu X-K, Shi H-Y, Hou X-M, Huang R-T, Xue S, Yang Y-Q. A HAND2 loss-of-function mutation causes familial ventricular septal defect and pulmonary stenosis. G3 (Bethesda). 2016;6:987–992.

  33. Li L, Wang J, Liu X-Y, Liu H, Shi H-Y, Yang X-X, Li N, Li Y-J, Huang R-T, Xue S, Qiu X-B, Yang Y-Q. HAND1 loss-of-function mutation contributes to congenital double outlet right ventricle. Int J Mol Med. 2017;39:711–8.

    CAS  PubMed  Article  Google Scholar 

  34. Qiao X-H, Wang F, Zhang X-L, Huang R-T, Xue S, Wang J, Qiu X-B, Liu X-Y, Yang Y-Q. MEF2C loss-of-function mutation contributes to congenital heart defects. Int J Med Sci. 2017;14:1143–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Wang J, Zhang Q, Chen Y, Yu S, Wu X, Bao X, Wen Y. Novel MEF2C point mutations in Chinese patients with Rett (−like) syndrome or non-syndromic intellectual disability: insights into genotype-phenotype correlation. BMC Med Genet. 2018;19:191.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Lu C-X, Wang W, Wang Q, Liu X-Y, Yang Y-Q. A Novel MEF2C Loss-of-function mutation associated with congenital double outlet right ventricle. Pediatr Cardiol. 2018;39:794–804.

    PubMed  Article  Google Scholar 

  37. Crucean A, Alqahtani A, Barron DJ, Brawn WJ, Richardson RV, O’Sullivan J, Anderson RH, Henderson DJ, Chaudhry B. Re-evaluation of hypoplastic left heart syndrome from a developmental and morphological perspective. Orphanet J Rare Dis. 2017;12.

  38. Cole CR, Eghtesady P. The myocardial and coronary histopathology and pathogenesis of hypoplastic left heart syndrome. Cardiol Young. 2016;26:19–29.

    PubMed  Article  Google Scholar 

  39. Bohlmeyer TJ, Helmke S, Ge S, Lynch J, Brodsky G, Sederberg JH, Robertson AD, Minobe W, Bristow MR, Perryman MB. Hypoplastic left heart syndrome myocytes are differentiated but possess a unique phenotype. Cardiovasc Pathol. 2003;12:23–31.

    PubMed  Article  Google Scholar 

  40. Bejjani AT, Wary N, Gu M. Hypoplastic left heart syndrome (HLHS): molecular pathogenesis and emerging drug targets for cardiac repair and regeneration. Expert Opin Ther Targets. 2021;25:621–32.

    CAS  PubMed  Article  Google Scholar 

  41. Lahm H, Schon P, Doppler S, Dreßen M, Cleuziou J, Deutsch M-A, Ewert P, Lange R, Krane M. Tetralogy of Fallot and hypoplastic left heart syndrome – complex clinical phenotypes meet complex genetic networks. Curr Genomics. 2015;16:141–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. McBride KL, Zender GA, Fitzgerald-Butt SM, Koehler D, Menesses-Diaz A, Fernbach S, Lee K, Towbin JA, Leal S, Belmont JW. Linkage analysis of left ventricular outflow tract malformations (aortic valve stenosis, coarctation of the aorta, and hypoplastic left heart syndrome). Eur J Hum Genet. 2009;17:811–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Payne AR, Chang S-W, Koenig SN, Zinn AR, Garg V. Submicroscopic chromosomal copy number variations identified in children with hypoplastic left heart syndrome. Pediatr Cardiol. 2012;33:757–63.

    PubMed  Article  Google Scholar 

  44. Cheng A, Neufeld-Kaiser W, Byers PH, Liu YJ. 6q25.1 (TAB2) microdeletion is a risk factor for hypoplastic left heart: a case report that expands the phenotype. BMC Cardiovasc Disord. 2020;20.

  45. Huseynova R, Bin Mahmoud L, Alshenqiti A, Alomran K, Alodaidan N and Huseynov O. A Rare Combination of Chromosomal Abnormalities in an Infant With Turner Syndrome and Hypoplastic Left Heart Syndrome. Cureus. 2021 July 20;13(7):e16500.

  46. Saraf A, Book WM, Nelson TJ, Xu C. Hypoplastic left heart syndrome: from bedside to bench and back. J Mol Cell Cardiol. 2019;135:109–18.

    CAS  PubMed  Article  Google Scholar 

  47. Durbin MD, Cadar AG, Williams CH, Guo Y, Bichell DP, Su YR, Hong CC. Hypoplastic left heart syndrome sequencing reveals a novel NOTCH1 mutation in a family with single ventricle defects. Pediatr Cardiol. 2017;38:1232–40.

    PubMed  PubMed Central  Article  Google Scholar 

  48. Theis JL, Hrstka SCL, Evans JM, O’Byrne MM, De Andrade M, O’Leary PW, Nelson TJ, Olson TM. Compound heterozygous NOTCH1 mutations underlie impaired cardiogenesis in a patient with hypoplastic left heart syndrome. Hum Genet. 2015;134:1003–11.

    CAS  PubMed  Article  Google Scholar 

  49. Tomita-Mitchell A, Stamm KD, Mahnke DK, Kim M-S, Hidestrand PM, Liang HL, Goetsch MA, Hidestrand M, Simpson P, Pelech AN, Tweddell JS, Benson DW, Lough JW, Mitchell ME. Impact of MYH6 variants in hypoplastic left heart syndrome. Physiol Genomics. 2016;48:912–21.

    PubMed  PubMed Central  Article  Google Scholar 

  50. Dasgupta C, Martinez A-M, Zuppan CW, Shah MM, Bailey LL, Fletcher WH. Identification of connexin43 (α1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2001;479:173–86.

    CAS  PubMed  Article  Google Scholar 

  51. Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lincesso A, Pezzoli L, Vetro A, Barachetti D, Boni L, Federici D, Soto A, Comas J, Ferrazzi P, Zuffardi O. Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin Genet. 2012;81:542–54.

    CAS  PubMed  Article  Google Scholar 

  52. Sun H, Yi T, Hao X, Yan H, Wang J, Li Q, Gu X, Zhou X, Wang S, Wang X, Wan P, Han L, Chen J, Zhu H, Zhang H, He Y. Contribution of single-gene defects to congenital cardiac left-sided lesions in the prenatal setting. Ultrasound Obstet Gynecol. 2020;56:225–32.

    CAS  PubMed  Article  Google Scholar 

  53. Liu X, Yagi H, Saeed S, Bais AS, Gabriel GC, Chen Z, Peterson KA, Li Y, Schwartz MC, Reynolds WT, Saydmohammed M, Gibbs B, Wu Y, Devine W, Chatterjee B, Klena NT, Kostka D, De Mesy Bentley KL, Ganapathiraju MK, Dexheimer P, Leatherbury L, Khalifa O, Bhagat A, Zahid M, Pu W, Watkins S, Grossfeld P, Murray SA, Porter GA, Tsang M, Martin LJ, Benson DW, Aronow BJ, Lo CW. The complex genetics of hypoplastic left heart syndrome. Nat Genet. 2017;49:1152–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Niessen K, Karsan A. Notch signaling in cardiac development. Circ Res. 2008;102:1169–81.

    CAS  PubMed  Article  Google Scholar 

  55. Hrstka SCL, Li X, Nelson TJ. NOTCH1-dependent nitric oxide signaling deficiency in hypoplastic left heart syndrome revealed through patient-specific phenotypes detected in bioengineered cardiogenesis. STEM CELLS. 2017;35:1106–19.

    CAS  PubMed  Article  Google Scholar 

  56. Lee TC, Zhao YD, Courtman DW, Stewart DJ. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation. 2000;101:2345–8.

    CAS  PubMed  Article  Google Scholar 

  57. Miller JD, Chu Y, Brooks RM, Richenbacher WE, Peña-Silva R, Heistad DD. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J Am Coll Cardiol. 2008;52:843–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Yang C, Xu Y, Yu M, Lee D, Alharti S, Hellen N, Ahmad Shaik N, Banaganapalli B, Sheikh Ali Mohamoud H, Elango R, Przyborski S, Tenin G, Williams S, O’Sullivan J, Al-Radi OO, Atta J, Harding SE, Keavney B, Lako M, Armstrong L. Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet. 2017;26:3031–3045.

  59. Jiang Y, Habibollah S, Tilgner K, Collin J, Barta T, Al-Aama JY, Tesarov L, Hussain R, Trafford AW, Kirkwood G, Sernagor E, Eleftheriou CG, Przyborski S, Stojković M, Lako M, Keavney B, Armstrong L. An induced pluripotent stem cell Model of hypoplastic left heart syndrome (HLHS) reveals multiple expression and functional differences in HLHS-derived cardiac myocytes. Stem Cells Transl Med. 2014;3:416–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Theis JL, Vogler G, Missinato MA, Li X, Nielsen T, Zeng X-XI, Martinez-Fernandez A, Walls SM, Kervadec A, Kezos JN, Birker K, Evans JM, O'Byrne MM, Fogarty ZC, Terzic A, Grossfeld P, Ocorr K, Nelson TJ, Olson TM, Colas AR and Bodmer R. Patient-specific genomics and cross-species functional analysis implicate LRP2 in hypoplastic left heart syndrome. eLife. 2020;9.

  61. Theis JL, Hu JJ, Sundsbak RS, Evans JM, Bamlet WR, Qureshi MY, O’Leary PW, Olson TM. Genetic association between hypoplastic left heart syndrome and cardiomyopathies. Circ Genom Precis Med. 2021;14.

  62. • Krane M, Dreßen M, Santamaria G, My I, Schneider CM, Dorn T, Laue S, Mastantuono E, Berutti R, Rawat H, Gilsbach R, Schneider P, Lahm H, Schwarz S, Doppler SA, Paige S, Puluca N, Doll S, Neb I, Brade T, Zhang Z, Abou-Ajram C, Northoff B, Holdt LM, Sudhop S, Sahara M, Goedel A, Dendorfer A, Tjong FVY, Rijlaarsdam ME, Cleuziou J, Lang N, Kupatt C, Bezzina C, Lange R, Bowles NE, Mann M, Gelb BD, Crotti L, Hein L, Meitinger T, Wu S, Sinnecker D, Gruber PJ, Laugwitz K-L, Moretti A. Sequential defects in cardiac lineage commitment and maturation cause hypoplastic left heart syndrome. Circulation. 2021;144:1409–1428. This study suggested the altered genetic and transcriptomic programs converged on sequential cellular process noted as premature cell cycle exit and impaired cardiac myogenesis, which lead to the left ventricle hypoplasia in HLHS.

  63. Miao Y, Tian L, Martin M, Paige SL, Galdos FX, Li J, Klein A, Zhang H, Ma N, Wei Y, Stewart M, Lee S, Moonen J-R, Zhang B, Grossfeld P, Mital S, Chitayat D, Wu JC, Rabinovitch M, Nelson TJ, Nie S, Wu SM, Gu M. Intrinsic endocardial defects contribute to hypoplastic left heart syndrome. Cell Stem Cell. 2020;27:574-589.e8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Qiao XH, Wang Q, Wang J, et al. A novel NR2F2 loss-of-function mutation predisposes to congenital heart defect. Eur J Med Genet. 2018;61(4):197-203.

Download references


American Heart Association, 906513, Zhiyun Yu, Cincinnati Children's Hospital Medical Center, National Heart, Lung, and Blood Institute, HL135258, Mingxia Gu.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mingxia Gu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regenerative Medicine

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Pek, N.M.Q. & Gu, M. Delving into the Molecular World of Single Ventricle Congenital Heart Disease. Curr Cardiol Rep 24, 463–471 (2022).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Congenital heart disease
  • Double inlet left ventricle
  • Double outlet left ventricle
  • Hypoplastic left heart syndrome
  • Septal defects
  • Atrioventricular valve hypoplasia