Skip to main content

Imaging Coronary Allograft Vasculopathy with Cardiac PET and Cardiac MRI

Abstract

Purpose of Review

Coronary allograft vasculopathy (CAV) is a leading cause of morbidity and mortality in heart transplant patients. It presents a diagnostic challenge as early CAV is often clinically silent, and it affects both epicardial coronary arteries and microvasculature. This review outlines the role of cardiac positron emission tomography (PET) and cardiac magnetic resonance imaging (CMR) in the diagnosis and prognosis of CAV.

Recent Findings

Relative myocardial perfusion imaging (MPI) and quantitative myocardial blood flow using cardiac PET are useful in the diagnosis and prognosis of CAV. Late gadolinium enhancement (LGE) and quantitative measures including myocardial perfusion reserve and mean diastolic rate using CMR are useful in the diagnosis and prognosis of CAV.

Summary

Cardiac PET is now established as a non-invasive imaging modality for screening and monitoring for CAV, and CMR has demonstrated promise in this application. Further investigation of these modalities is needed with larger, multicenter studies that follow patients serially to demonstrate the clinical implications of using these modalities to detect early CAV and alter therapies to improve patient outcomes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as:

    • Of importance

      •• Of major importance

      1. 1.

        Mehra MR, Canter CE, Hannan MM, Semigran MJ, Uber PA, Baran DA, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant. 2016;35(1):1–23.

        PubMed  Google Scholar 

      2. 2.

        Nikolova AP, Kobashigawa JA. Cardiac allograft vasculopathy: the enduring enemy of cardiac transplantation. Transplantation. 2019;103(7).

      3. 3.

        Billingham ME. Graft coronary disease: the lesions and the patients. Transplant Proc. 1989;21(4):3665–6.

        CAS  PubMed  Google Scholar 

      4. 4.

        Tanaka H, Swanson SJ, Sukhova G, Schoen FJ, Libby P. Early proliferation of medial smooth muscle cells in coronary arteries of rabbit cardiac allografts during immunosuppression with cyclosporine A. Transplant Proc. 1995;27(3):2062–5.

        CAS  PubMed  Google Scholar 

      5. 5.

        Hiemann NE, Wellnhofer E, Knosalla C, Lehmkuhl HB, Stein J, Hetzer R, et al. Prognostic impact of microvasculopathy on survival after heart transplantation: evidence from 9713 endomyocardial biopsies. Circulation. 2007;116(11):1274–82.

        PubMed  Google Scholar 

      6. 6.

        Davis SF, Yeung AC, Meredith IT, Charbonneau F, Ganz P, Selwyn AP, et al. Early endothelial dysfunction predicts the development of transplant coronary artery disease at 1 year posttransplant. Circulation. 1996;93(3):457–62.

        CAS  PubMed  Google Scholar 

      7. 7.

        Yang H-M, Khush K, Luikart H, Okada K, Lim H-S, Kobayashi Y, et al. Invasive assessment of coronary physiology predicts late mortality after heart transplantation. Circulation. 2016;133(20):1945–50.

        PubMed  Google Scholar 

      8. 8.

        Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA, et al. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant. 2010;29(7):717–27.

        PubMed  Google Scholar 

      9. 9.

        St Goar FG, Pinto FJ, Alderman EL, Valantine HA, Schroeder JS, Gao SZ, et al. Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of “angiographically silent” intimal thickening. Circulation. 1992;85(3):979–87.

      10. 10.

        Kobashigawa JA, Tobis JM, Starling RC, Tuzcu EM, Smith AL, Valantine HA, et al. Multicenter intravascular ultrasound validation study among heart transplant recipients: outcomes after five years. J Am Coll Cardiol. 2005;45(9):1532–7.

        PubMed  Google Scholar 

      11. 11.

        Gao SZ, Alderman EL, Schroeder JS, Hunt SA, Wiederhold V, Stinson EB. Progressive coronary luminal narrowing after cardiac transplantation. Circulation. 1990;82(5 Suppl):Iv269–75.

      12. 12.

        Sharples LD, Jackson CH, Parameshwar J, Wallwork J, Large SR. Diagnostic accuracy of coronary angiography and risk factors for post-heart-transplant cardiac allograft vasculopathy. Transplantation. 2003;76(4):679–82.

        PubMed  Google Scholar 

      13. 13.

        Lee JH, Okada K, Khush K, Kobayashi Y, Sinha S, Luikart H, et al. Coronary endothelial dysfunction and the index of microcirculatory resistance as a marker of subsequent development of cardiac allograft vasculopathy. Circulation. 2017;135(11):1093–5.

        PubMed  PubMed Central  Google Scholar 

      14. 14.

        Lopez-Fernandez S, Manito-Lorite N, Gómez-Hospital JA, Roca J, Fontanillas C, Melgares-Moreno R, et al. Cardiogenic shock and coronary endothelial dysfunction predict cardiac allograft vasculopathy after heart transplantation. Clin Transplant. 2014;28(12):1393–401.

        PubMed  Google Scholar 

      15. 15.

        Hollenberg SM, Klein LW, Parrillo JE, Scherer M, Burns D, Tamburro P, et al. Coronary endothelial dysfunction after heart transplantation predicts allograft vasculopathy and cardiac death. Circulation. 2001;104(25):3091–6.

        CAS  PubMed  Google Scholar 

      16. 16.

        Colvin-Adams M, Harcourt N, Duprez D. Endothelial dysfunction and cardiac allograft vasculopathy. J Cardiovasc Transl Res. 2013;6(2):263–77.

        PubMed  Google Scholar 

      17. 17.

        Pober JS, Jane-wit D, Qin L, Tellides G. Interacting mechanisms in the pathogenesis of cardiac allograft vasculopathy. Arterioscler Thromb Vasc Biol. 2014;34(8):1609–14.

        CAS  PubMed  PubMed Central  Google Scholar 

      18. 18.

        Ramzy D, Rao V, Brahm J, Miriuka S, Delgado D, Ross HJ. Cardiac allograft vasculopathy: a review. Can J Surg. 2005;48(4):319–27.

        PubMed  PubMed Central  Google Scholar 

      19. 19.

        Segura AM, Buja LM. Cardiac allograft vasculopathy: a complex multifactorial sequela of heart transplantation. Tex Heart Inst J. 2013;40(4):400–2.

        PubMed  PubMed Central  Google Scholar 

      20. 20.

        Lu WH, Palatnik K, Fishbein GA, Lai C, Levi DS, Perens G, et al. Diverse morphologic manifestations of cardiac allograft vasculopathy: a pathologic study of 64 allograft hearts. J Heart Lung Transplant. 2011;30(9):1044–50.

        PubMed  Google Scholar 

      21. 21.

        Costello JP, Mohanakumar T, Nath DS. Mechanisms of chronic cardiac allograft rejection. Tex Heart Inst J. 2013;40(4):395–9.

        PubMed  PubMed Central  Google Scholar 

      22. 22.

        Billingham ME. Histopathology of graft coronary disease. J Heart Lung Transplant. 1992;11(3 Pt 2):S38-44.

        CAS  PubMed  Google Scholar 

      23. 23.

        Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Med. 2018;59(2):273.

        CAS  PubMed  Google Scholar 

      24. 24.

        Maddahi J, Lazewatsky J, Udelson JE, Berman DS, Beanlands RSB, Heller GV, et al. Phase-III clinical trial of fluorine-18 flurpiridaz positron emission tomography for evaluation of coronary artery disease. J Am Coll Cardiol. 2020;76(4):391–401.

        CAS  PubMed  Google Scholar 

      25. 25.

        Chow BJ, Ananthasubramaniam K, dekemp RA, Dalipaj MM, Beanlands RS, Ruddy TD. Comparison of treadmill exercise versus dipyridamole stress with myocardial perfusion imaging using rubidium-82 positron emission tomography. J Am Coll Cardiol. 2005;45(8):1227–34.

      26. 26.

        Chow BJ, Beanlands RS, Lee A, DaSilva JN, deKemp RA, Alkahtani A, et al. Treadmill exercise produces larger perfusion defects than dipyridamole stress N-13 ammonia positron emission tomography. J Am Coll Cardiol. 2006;47(2):411–6.

        PubMed  Google Scholar 

      27. 27.

        Kajander S, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122(6):603–13.

        CAS  PubMed  Google Scholar 

      28. 28.

        Hsiao E, Ali B, Blankstein R, Skali H, Ali T, Bruyere J, et al. Detection of obstructive coronary artery disease using regadenoson stress and 82Rb PET/CT myocardial perfusion imaging. J Nucl Med. 2013;54(10):1748–54.

        CAS  PubMed  Google Scholar 

      29. 29.

        Al-Mallah MH, Sitek A, Moore SC, Di Carli M, Dorbala S. Assessment of myocardial perfusion and function with PET and PET/CT. J Nucl Cardiol. 2010;17(3):498–513.

        PubMed  PubMed Central  Google Scholar 

      30. 30.

        Jagathesan R, Barnes E, Rosen SD, Foale RA, Camici PG. Comparison of myocardial blood flow and coronary flow reserve during dobutamine and adenosine stress: implications for pharmacologic stress testing in coronary artery disease. J Nucl Cardiol. 2006;13(3):324–32.

        PubMed  Google Scholar 

      31. 31.

        Rajaram M, Tahari AK, Lee AH, Lodge MA, Tsui B, Nekolla S, et al. Cardiac PET/CT misregistration causes significant changes in estimated myocardial blood flow. J Nucl Med. 2013;54(1):50–4.

        PubMed  Google Scholar 

      32. 32.

        Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19(4):670–80.

        PubMed  Google Scholar 

      33. 33.

        Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55(2):248–55.

        PubMed  Google Scholar 

      34. 34.

        Dorbala S, Di Carli MF. Cardiac PET perfusion: prognosis, risk stratification, and clinical management. Semin Nucl Med. 2014;44(5):344–57.

        PubMed  PubMed Central  Google Scholar 

      35. 35.

        Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24.

        PubMed  PubMed Central  Google Scholar 

      36. 36.

        Gupta A, Taqueti VR, Hoef TPvd, Bajaj NS, Bravo PE, Murthy VL, et al. Integrated noninvasive physiological assessment of coronary circulatory function and impact on cardiovascular mortality in patients with stable coronary artery disease. Circulation. 2017;136(24):2325–36.

      37. 37.

        Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126(15):1858–68.

        CAS  PubMed  PubMed Central  Google Scholar 

      38. 38.

        Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Dorbala S, et al. Coronary vascular dysfunction and prognosis in patients with chronic kidney disease. JACC: Cardiovascular Imaging. 2012;5(10):1025–34.

      39. 39.

        Shah NR, Charytan DM, Murthy VL, Lami HS, Veeranna V, Cheezum MK, et al. Prognostic value of coronary flow reserve in patients with dialysis-dependent ESRD. J Am Soc Nephrol. 2016;27(6):1823–9.

        PubMed  Google Scholar 

      40. 40.

        Majmudar MD, Murthy VL, Shah RV, Kolli S, Mousavi N, Foster CR, et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. European Heart Journal-Cardiovascular Imaging. 2015;16(8):900–9.

        PubMed  PubMed Central  Google Scholar 

      41. 41.

        Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129(24):2518–27.

        PubMed  PubMed Central  Google Scholar 

      42. 42.

        Chih S, Chong AY, Erthal F, deKemp RA, Davies RA, Stadnick E, et al. PET Assessment of epicardial intimal disease and microvascular dysfunction in cardiac allograft vasculopathy. J Am Coll Cardiol. 2018;71(13):1444–56.

        PubMed  Google Scholar 

      43. 43.

        Miller RJH, Manabe O, Tamarappoo B, Hayes S, Friedman JD, Slomka PJ, et al. Comparative prognostic and diagnostic value of myocardial blood flow and myocardial flow reserve after cardiac transplantation. J Nucl Med. 2020;61(2):249–55.

        CAS  PubMed  Google Scholar 

      44. 44.

        Bravo PE, Bergmark BA, Vita T, Taqueti VR, Gupta A, Seidelmann S, et al. Diagnostic and prognostic value of myocardial blood flow quantification as non-invasive indicator of cardiac allograft vasculopathy. Eur Heart J. 2018;39(4):316–23.

        CAS  PubMed  Google Scholar 

      45. 45.

        •• Konerman MC, Lazarus JJ, Weinberg RL, Shah RV, Ghannam M, Hummel SL, et al. Reduced myocardial flow reserve by positron emission tomography predicts cardiovascular events after cardiac transplantation. Circ Heart Fail. 2018;11(6):e004473. Findings demonstrated that myocardial flow reserve and stress myocardial blood flow on cardiac PET were significantly correlated with ISHLT CAV grade. These measures were also associated with cardiovascular death, acute coronary syndrome, coronary revascularization, and heart failure hospitalization.

      46. 46.

        Kofoed KF, Czernin J, Johnson J, Kobashigawa J, Phelps ME, Laks H, et al. Effects of cardiac allograft vasculopathy on myocardial blood flow, vasodilatory capacity, and coronary vasomotion. Circulation. 1997;95(3):600–6.

        CAS  PubMed  Google Scholar 

      47. 47.

        Allen-Auerbach M, Schöder H, Johnson J, Kofoed K, Einhorn K, Phelps ME, et al. Relationship between coronary function by positron emission tomography and temporal changes in morphology by intravascular ultrasound (IVUS) in transplant recipients. J Heart Lung Transplant. 1999;18(3):211–9.

        CAS  PubMed  Google Scholar 

      48. 48.

        Mehra MR, Ventura HO, Stapleton DD, Smart FW, Collins TC, Ramee SR. Presence of severe intimal thickening by intravascular ultrasonography predicts cardiac events in cardiac allograft vasculopathy. J Heart Lung Transplant. 1995;14(4):632–9.

        CAS  PubMed  Google Scholar 

      49. 49.

        Potena L, Masetti M, Sabatino M, Bacchi-Reggiani ML, Pece V, Prestinenzi P, et al. Interplay of coronary angiography and intravascular ultrasound in predicting long-term outcomes after heart transplantation. J Heart Lung Transplant. 2015;34(9):1146–53.

        PubMed  Google Scholar 

      50. 50.

        Rickenbacher PR, Pinto FJ, Lewis NP, Hunt SA, Alderman EL, Schroeder JS, et al. Prognostic importance of intimal thickness as measured by intracoronary ultrasound after cardiac transplantation. Circulation. 1995;92(12):3445–52.

        CAS  PubMed  Google Scholar 

      51. 51.

        Wu YW, Chen YH, Wang SS, Jui HY, Yen RF, Tzen KY, et al. PET assessment of myocardial perfusion reserve inversely correlates with intravascular ultrasound findings in angiographically normal cardiac transplant recipients. J Nucl Med. 2010;51(6):906–12.

        PubMed  Google Scholar 

      52. 52.

        Ardle BAM, Davies RA, Chen L, Small GR, Ruddy TD, Dwivedi G, et al. Prognostic value of rubidium-82 positron emission tomography in patients after heart transplant. Circulation: Cardiovascular Imaging. 2014;7(6):930–7.

      53. 53.

        Feher A, Srivastava A, Quail MA, Boutagy NE, Khanna P, Wilson L, et al. Serial assessment of coronary flow reserve by rubidium-82 positron emission tomography predicts mortality in heart transplant recipients. JACC Cardiovasc Imaging. 2020;13(1 Pt 1):109–20.

        PubMed  Google Scholar 

      54. 54.

        Lazarus JJ, Saleh A, Ghannam M, Aaronson K, Colvin M, Pagani F, et al. Safety of regadenoson positron emission tomography stress testing in orthotopic heart transplant patients. J Nucl Cardiol. 2020;27(3):943–8.

        PubMed  Google Scholar 

      55. 55.

        Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey BJ, et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult heart transplantation report —2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36(10):1037–46.

        PubMed  Google Scholar 

      56. 56.

        Ohira H, Dowsley T, Dwivedi G, deKemp RA, Chow BJ, Ruddy TD, et al. Quantification of myocardial blood flow using PET to improve the management of patients with stable ischemic coronary artery disease. Future Cardiol. 2014;10(5):611–31.

        CAS  PubMed  Google Scholar 

      57. 57.

        Senthamizhchelvan S, Bravo PE, Lodge MA, Merrill J, Bengel FM, Sgouros G. Radiation dosimetry of 82Rb in humans under pharmacologic stress. J Nucl Med. 2011;52(3):485.

        PubMed  Google Scholar 

      58. 58.

        Nesterov SV, Deshayes E, Sciagrà R, Settimo L, Declerck JM, Pan X-B, et al. Quantification of myocardial blood flow in absolute terms using 82Rb PET imaging: the RUBY-10 Study. JACC: Cardiovascular Imaging. 2014;7(11):1119–27.

      59. 59.

        Feher A, Sinusas AJ. Evaluation of cardiac allograft vasculopathy by positron emission tomography. Journal of Nuclear Cardiology. 2021.

      60. 60.

        Muehling OM, Wilke NM, Panse P, Jerosch-Herold M, Wilson BV, Wilson RF, et al. Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J Am Coll Cardiol. 2003;42(6):1054–60.

        PubMed  Google Scholar 

      61. 61.

        Korosoglou G, Osman NF, Dengler TJ, Riedle N, Steen H, Lehrke S, et al. Strain-encoded cardiac magnetic resonance for the evaluation of chronic allograft vasculopathy in transplant recipients. Am J Transplant. 2009;9(11):2587–96.

        CAS  PubMed  Google Scholar 

      62. 62.

        Steen H, Merten C, Refle S, Klingenberg R, Dengler T, Giannitsis E, et al. Prevalence of different gadolinium enhancement patterns in patients after heart transplantation. J Am Coll Cardiol. 2008;52(14):1160–7.

        PubMed  Google Scholar 

      63. 63.

        Erbel C, Mukhammadaminova N, Gleissner CA, Osman NF, Hofmann NP, Steuer C, et al. Myocardial perfusion reserve and strain-encoded CMR for evaluation of cardiac allograft microvasculopathy. JACC: Cardiovascular Imaging. 2016;9(3):255–66.

      64. 64.

        • Kazmirczak F, Nijjar PS, Zhang L, Hughes A, Chen K-HA, Okasha O, et al. Safety and prognostic value of regadenoson stress cardiovascular magnetic resonance imaging in heart transplant recipients. J Cardiovasc Magn Reson. 2019;21(1):9. Findings demonstrated that transplant patients with abnormal stress CMRs (defined as having either ischemia, LGE, or systolic dysfunction) had higher rates of a composite endpoint of myocardial infarction, percutaneous intervention, cardiac hospitalization, retransplantation, or death than those with normal stress CMRs.

      65. 65.

        •• Hughes A, Okasha O, Farzaneh-Far A, Kazmirczak F, Nijjar Prabhjot S, Velangi P, et al. Myocardial fibrosis and prognosis in heart transplant recipients. Circulation: Cardiovascular Imaging. 2019;12(10):e009060. Findings demonstrated that the prevalence of myocardial fibrosis increased as the severity of CAV increased. In addition, while ischemic LGE increased in prevalence with increasing CAV grade, nonischemic LGE decreased in prevalence with increasing CAV grade. Myocardial fibrosis as detected by LGE was associated with a higher incidence of a composite endpoint of all-cause mortality and major adverse cardiac events.

      66. 66.

        Miller CA, Sarma J, Naish JH, Yonan N, Williams SG, Shaw SM, et al. Multiparametric cardiovascular magnetic resonance assessment of cardiac allograft vasculopathy. J Am Coll Cardiol. 2014;63(8):799–808.

        PubMed  Google Scholar 

      67. 67.

        Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen BV, Stillman AE, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology. 1997;204(2):373–84.

        CAS  PubMed  Google Scholar 

      68. 68.

        Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101(12):1379–83.

        CAS  PubMed  Google Scholar 

      69. 69.

        Biglands JD, Magee DR, Sourbron SP, Plein S, Greenwood JP, Radjenovic A. Comparison of the diagnostic performance of four quantitative myocardial perfusion estimation methods used in cardiac MR imaging: CE-MARC Substudy. Radiology. 2015;275(2):393–402.

        PubMed  Google Scholar 

      70. 70.

        Koskenvuo JW, Hartiala JJ, Knuuti J, Sakuma H, Toikka JO, Komu M, et al. Assessing coronary sinus blood flow in patients with coronary artery disease: a comparison of phase-contrast MR imaging with positron emission tomography. AJR Am J Roentgenol. 2001;177(5):1161–6.

        CAS  PubMed  Google Scholar 

      71. 71.

        Schwitter J, Nanz D, Kneifel S, Bertschinger K, Büchi M, Knüsel PR, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001;103(18):2230–5.

        CAS  PubMed  Google Scholar 

      72. 72.

        Panting JR, Gatehouse PD, Yang GZ, Grothues F, Firmin DN, Collins P, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med. 2002;346(25):1948–53.

        PubMed  Google Scholar 

      73. 73.

        Lim YJ, Nanto S, Masuyama T, Kodama K, Ikeda T, Kitabatake A, et al. Visualization of subendocardial myocardial ischemia with myocardial contrast echocardiography in humans. Circulation. 1989;79(2):233–44.

        CAS  PubMed  Google Scholar 

      Download references

      Author information

      Affiliations

      Authors

      Corresponding author

      Correspondence to Chaitanya Madamanchi.

      Ethics declarations

      Conflict of Interest

      Dr. Murthy owns stock in General Electric and Cardinal Health. Dr. Murthy has served as an advisor to and owns stock options in Ionetix. Dr. Murthy has received speaking honoraria and research grants from Siemens Medical Imaging. Dr Murthy receives non-financial research support from INVIA Medical Imaging. He has received expert witness payments on behalf of Jubilant DraxImage and a speaking honorarium from 2Quart Medical. The other authors declare that they have no conflict of interest.

      Human and Animal Rights and Informed Consent

      This article does not contain any studies with human or animal subjects performed by any of the authors.

      Additional information

      Publisher's Note

      Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

      This article is part of the Topical Collection on Cardiac PET, CT, and MRI

      Rights and permissions

      Reprints and Permissions

      About this article

      Verify currency and authenticity via CrossMark

      Cite this article

      Madamanchi, C., Konerman, M.C. & Murthy, V.L. Imaging Coronary Allograft Vasculopathy with Cardiac PET and Cardiac MRI. Curr Cardiol Rep 23, 175 (2021). https://doi.org/10.1007/s11886-021-01606-z

      Download citation

      Keywords

      • Coronary allograft vasculopathy
      • Positron emission tomography
      • Magnetic resonance imaging