Skip to main content
Log in

Atrial Fibrillation Genomics: Discovery and Translation

  • Cardiovascular Genomics (P Natarajan, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Our understanding of the fundamental cellular and molecular factors leading to atrial fibrillation (AF) remains stagnant despite significant advancement in ablation and device technologies. Diagnosis and prevention strategies fall behind that of treatment, but expanding knowledge in AF genetics holds the potential to drive progress. We aim to review how an understanding of the genetic contributions to AF can guide an approach to individualized risk stratification and novel avenues in drug discovery.

Recent Findings

Rare familial forms of AF identified monogenic contributions to the development of AF. Genome-wide association studies (GWAS) further identified single-nucleotide polymorphisms (SNPs) suggesting polygenic and multiplex nature of this common disease. Polygenic risk scores accounting for the multitude of associated SNPs that each confer mildly elevated risk have been developed to translate genetic information into clinical practice, though shortcomings remain. Additionally, novel laboratory methods have been empowered by recent genetic findings to enhance drug discovery efforts.

Summary

AF is increasingly recognized as a disease with a significant genetic component. With expanding sequencing technologies and accessibility, polygenic risk scores can help identify high risk individuals. Advancement in digital health tools, artificial intelligence and machine learning based on standard electrocardiograms, and genomic driven drug discovery may be integrated to deliver a sophisticated level of precision medicine in this modern era of emphasis on prevention. Randomized, prospective studies to demonstrate clinical benefits of these available tools are needed to validate this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

AF:

Atrial fibrillation

CAD:

Coronary artery disease

ECG:

Electrocardiogram

EHR:

Electronic health record

HT:

High throughput

iPSC:

Induced pluripotent stem cell

GWAS:

Genome-wide association study

LD:

Linkage disequilibrium

PRS:

Polygenic risk score

References

Papers of particular interest, published recently, have been highlighted as:

    • Of importance

    1. Kaarisalo MM, Immonen-Raiha P, Marttila RJ, Salomaa V, Kaarsalo E, Salmi K, et al. Atrial fibrillation and stroke. Mortality and causes of death after the first acute ischemic stroke. Stroke. 1997;28(2):311–5. https://doi.org/10.1161/01.str.28.2.311.

      Article  CAS  PubMed  Google Scholar 

    2. Staerk L, Sherer JA, Ko D, Benjamin EJ, Helm RH. Atrial Fibrillation: Epidemiology, Pathophysiology, and Clinical Outcomes. Circ Res. 2017;120(9):1501–17. https://doi.org/10.1161/CIRCRESAHA.117.309732.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    3. Williams BA, Chamberlain AM, Blankenship JC, Hylek EM, Voyce S. Trends in Atrial Fibrillation Incidence Rates Within an Integrated Health Care Delivery System, 2006 to 2018. JAMA Netw Open. 2020;3(8):e2014874. https://doi.org/10.1001/jamanetworkopen.2020.14874.

    4. Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X. Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am J Cardiol. 2013;112(8):1142–7. https://doi.org/10.1016/j.amjcard.2013.05.063.

      Article  PubMed  Google Scholar 

    5. Chung MK, Eckhardt LL, Chen LY, Ahmed HM, Gopinathannair R, Joglar JA, et al. Lifestyle and Risk Factor Modification for Reduction of Atrial Fibrillation: A Scientific Statement From the American Heart Association. Circulation. 2020;141(16):e750–72. https://doi.org/10.1161/CIR.0000000000000748.

      Article  PubMed  Google Scholar 

    6. Kannel WB, Wolf PA, Benjamin EJ, Levy D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol. 1998;82(8A):2N–9N. https://doi.org/10.1016/s0002-9149(98)00583-9.

      Article  CAS  PubMed  Google Scholar 

    7. Dzeshka MS, Shantsila A, Shantsila E, Lip GYH. Atrial Fibrillation and Hypertension. Hypertension. 2017;70(5):854–61. https://doi.org/10.1161/HYPERTENSIONAHA.117.08934.

    8. Kanagala R, Murali NS, Friedman PA, Ammash NM, Gersh BJ, Ballman KV, Shamsuzzaman ASM, Somers VK. Obstructive sleep apnea and the recurrence of atrial fibrillation. Circulation. 2003;107(20):2589–94. https://doi.org/10.1161/01.CIR.0000068337.25994.21.

      Article  PubMed  Google Scholar 

    9. Nalliah CJ, Sanders P, Kottkamp H, Kalman JM. The role of obesity in atrial fibrillation. Eur Heart J. 2016;37(20):1565–72. https://doi.org/10.1093/eurheartj/ehv486.

      Article  PubMed  Google Scholar 

    10. Middeldorp ME, Pathak RK, Meredith M, Mehta AB, Elliott AD, Mahajan R, et al. Prevention and regressive effect of weight-loss and risk factor modification on atrial fibrillation: the REVERSE-AF study. Europace. 2018;20(12):1929–35. https://doi.org/10.1093/europace/euy117.

      Article  PubMed  Google Scholar 

    11. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–66. https://doi.org/10.1056/NEJM199809033391003.

      Article  CAS  PubMed  Google Scholar 

    12. Iwasaki YK, Nishida K, Kato T, Nattel S. Atrial fibrillation pathophysiology: implications for management. Circulation. 2011;124(20):2264–74. https://doi.org/10.1161/CIRCULATIONAHA.111.019893.

      Article  CAS  PubMed  Google Scholar 

    13. Steinberg JS, Varma N, Cygankiewicz I, Aziz P, Balsam P, Baranchuk A, et al. 2017 ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiac monitoring/telemetry. Heart Rhythm. 2017;14(7):e55–e96. https://doi.org/10.1016/j.hrthm.2017.03.038.

      Article  PubMed  Google Scholar 

    14. Tayal AH, Tian M, Kelly KM, Jones SC, Wright DG, Singh D, Jarouse J, Brillman J, Murali S, Gupta R. Atrial fibrillation detected by mobile cardiac outpatient telemetry in cryptogenic TIA or stroke. Neurology. 2008;71(21):1696–701. https://doi.org/10.1212/01.wnl.0000325059.86313.31.

      Article  CAS  PubMed  Google Scholar 

    15. Bhatt A, Majid A, Razak A, Kassab M, Hussain S, Safdar A. Predictors of occult paroxysmal atrial fibrillation in cryptogenic strokes detected by long-term noninvasive cardiac monitoring. Stroke Res Treat. 2011;2011:172074. https://doi.org/10.4061/2011/172074.

    16. Sanna T, Diener H-C, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370(26):2478–86. https://doi.org/10.1056/NEJMoa1313600.

      Article  CAS  PubMed  Google Scholar 

    17. Flint AC, Banki NM, Ren X, Rao VA, Go AS. Detection of paroxysmal atrial fibrillation by 30-day event monitoring in cryptogenic ischemic stroke: the stroke and monitoring for PAF in real time (SMART) registry. Stroke. 2012;43(10):2788–90. https://doi.org/10.1161/STROKEAHA.112.665844.

      Article  PubMed  Google Scholar 

    18. Stahrenberg R, Weber-Krüger M, Seegers J, Edelman F, Lahno R, Haase B, et al. Enhanced detection of paroxysmal atrial fibrillation by early and prolonged continuous holter monitoring in patients with cerebral ischemia presenting in sinus rhythm. Stroke. 2010;41(12):2884–8. https://doi.org/10.1161/STROKEAHA.110.591958.

      Article  PubMed  Google Scholar 

    19. Buck BH, Hill MD, Quinn FR, Butcher KS, Menon BK, Gulamhusein S, et al. Effect of Implantable vs Prolonged External Electrocardiographic Monitoring on Atrial Fibrillation Detection in Patients With Ischemic Stroke: The PER DIEM Randomized Clinical Trial. JAMA. 2021;325(21):2160–8. https://doi.org/10.1001/jama.2021.6128.

      Article  PubMed  Google Scholar 

    20. Bernstein RA, Kamel H, Granger CB, Piccini JB, Sethi PP, Katz JM, et al. Effect of Long-term Continuous Cardiac Monitoring vs Usual Care on Detection of Atrial Fibrillation in Patients With Stroke Attributed to Large- or Small-Vessel Disease: The STROKE-AF Randomized Clinical Trial. JAMA. 2021;325(21):2169–77. https://doi.org/10.1001/jama.2021.6470.

      Article  PubMed  Google Scholar 

    21. Ha A, Verma S, Mazer D, Quan A, Latter D, Yanagawa B, et al. Abstract 18618: Enhanced monitoring for atrial fibrillation following cardiac surgery-SEARCH-AF Cardiolink Randomized Trial. Circulation. 2020;142(24). https://doi.org/10.1161/CIR.0000000000000940.

    22. Healey JS, Connolly SJ, Gold MR, Israel CW, Van Gelder IC, Capucci A, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med. 2012;366(2):120–9. https://doi.org/10.1056/NEJMoa1105575.

      Article  CAS  PubMed  Google Scholar 

    23. Svennberg E, Engdahl J, Al-Khalili F, Friberg L, Frykman V, Rosenqvist M. Mass Screening for Untreated Atrial Fibrillation: The STROKESTOP Study. Circulation. 2015;131(25):2176–84. https://doi.org/10.1161/CIRCULATIONAHA.114.014343.

      Article  PubMed  Google Scholar 

    24. Chan N, Choy C. Screening for atrial fibrillation in 13 122 Hong Kong citizens with smartphone electrocardiogram. Heart. 2017;103(1):24–31. https://doi.org/10.1136/heartjnl-2016-309993.

      Article  PubMed  Google Scholar 

    25. Kaasenbrood F, Hollander M, Rutten FH, Gerhards LJ, Hoes AW, Tieleman RG. Yield of screening for atrial fibrillation in primary care with a hand-held, single-lead electrocardiogram device during influenza vaccination. Europace. 2016;18(10):1514–20. https://doi.org/10.1093/europace/euv426.

    26. Tison GH, Sanchez JM, Ballinger B, Singh A, Olgin JE, Pletcher MJ, et al. Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch. JAMA Cardiol. 2018;3(5):409–16. https://doi.org/10.1001/jamacardio.2018.0136.

      Article  PubMed  PubMed Central  Google Scholar 

    27. Lowres N, Neubeck L, Salkeld G, Krass I, McLachlan AJ, Redfern J, et al. Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. The SEARCH-AF study. Thromb Haemost. 2014;111(6):1167–76. https://doi.org/10.1160/TH14-03-0231.

      Article  CAS  PubMed  Google Scholar 

    28. • Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019;394(10201):861–7. https://doi.org/10.1016/S0140-6736(19)31721-0This study highlights the power of AI/ML driven algorithms to identify patients with AF from electrocardiograms even when in normal sinus rhythm.

    29. Raghunath S, Pfeifer JM, Ulloa-Cerna AE, Nemani A, Carbonati T, Jing L, et al. Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-Lead ECG and Help Identify Those at Risk of Atrial Fibrillation-Related Stroke. Circulation. 2021;143(13):1287–98. https://doi.org/10.1161/CIRCULATIONAHA.120.047829.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    30. Verweij N, Benjamins JW, Morley MP, van de Vegte YJ, Teumer A, Trenkwalder T, et al. The Genetic Makeup of the Electrocardiogram. Cell Syst. 2020;11(3):229-238 e5. https://doi.org/10.1016/j.cels.2020.08.005.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    31. Alonso A, Norby FL. Predicting Atrial Fibrillation and Its Complications. Circ J. 2016;80(5):1061–6. https://doi.org/10.1253/circj.CJ-16-0239.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    32. Schnabel RB, Sullivan LM, Levy D, Pencina MJ, Massaro JM, D’Agostino RB Sr., et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet. 2009;373(9665):739–45. https://doi.org/10.1016/S0140-6736(09)60443-8.

      Article  PubMed  PubMed Central  Google Scholar 

    33. Chamberlain AM, Agarwal SK, Folsom AR, Soliman EZ, Chambless LE, Crow R, Ambrose M, Alonso A. A clinical risk score for atrial fibrillation in a biracial prospective cohort (from the Atherosclerosis Risk in Communities [ARIC] study). Am J Cardiol. 2011;107(1):85–91. https://doi.org/10.1016/j.amjcard.2010.08.049.

      Article  PubMed  PubMed Central  Google Scholar 

    34. Alonso A, Roetker NS, Soliman EZ, Chen LY, Greenland P, Heckbert SR. Prediction of Atrial Fibrillation in a Racially Diverse Cohort: The Multi-Ethnic Study of Atherosclerosis (MESA). J Am Heart Assoc. 2016;5(2). https://doi.org/10.1161/JAHA.115.003077.

    35. Everett BM, Cook NR, Conen D, Chasman DI, Ridker PM, Albert CM. Novel genetic markers improve measures of atrial fibrillation risk prediction. Eur Heart J. 2013;34(29):2243–51. https://doi.org/10.1093/eurheartj/eht033.

      Article  PubMed  PubMed Central  Google Scholar 

    36. Christophersen IE, Yin X, Larson MG, Lubitz SA, Magnani JW, McManus DD, Ellinor PT, Benjamin EJ. A comparison of the CHARGE-AF and the CHA2DS2-VASc risk scores for prediction of atrial fibrillation in the Framingham heart study. Am Heart J. 2016;178:45–54. https://doi.org/10.1016/j.ahj.2016.05.004.

      Article  PubMed  PubMed Central  Google Scholar 

    37. Kolek MJ, Graves AJ, Xu M, Bian A, Teixeira PL, Shoemaker MB, et al. Evaluation of a Prediction Model for the Development of Atrial Fibrillation in a Repository of Electronic Medical Records. JAMA Cardiol. 2016;1(9):1007–13. https://doi.org/10.1001/jamacardio.2016.3366.

      Article  PubMed  PubMed Central  Google Scholar 

    38. Kolek MJ, Muehlschlegel JD, Bush WS, Parvez B, Murray KT, Stein CM, et al. Genetic and clinical riskprediction model for postoperative atrial fibrillation. Circ ArrhythmElectrophysiol. 2015;8(1):25–31. https://doi.org/10.1161/CIRCEP.114.002300.

      Article  CAS  Google Scholar 

    39. Lubitz SA, Yin X, Lin HJ, Kolek M, Smith JG, Trompet S, et al. Genetic Risk Prediction of Atrial Fibrillation. Circulation. 2017;135(14):1311–20. https://doi.org/10.1161/CIRCULATIONAHA.116.024143.

    40. • Muse ED, Wineinger NE, Spencer EG, Peters M, Henderson R, Zhang Y, et al. Validation of a genetic risk score for atrial fibrillation: A prospective multicenter cohort study. PLoS Med. 2018;15(3):e1002525. https://doi.org/10.1371/journal.pmed.1002525. A prospective evaluation of an AF PRS in a clinical setting.

    41. Okubo Y, Nakano Y, Ochi H, Onohara Y, Tokuyama T, Motoda C, et al. Predicting atrial fibrillation using a combination of genetic risk score and clinical risk factors. Hear Rhythm. 2020;17(5 Pt A):699–705. https://doi.org/10.1016/j.hrthm.2020.01.006.

      Article  Google Scholar 

    42. Holmes DR, Reddy VY, Turi ZG, Doshi SK, Sievert H, Buchbinder M, Mullin CM, Sick P. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet. 2009;374(9689):534–42. https://doi.org/10.1016/S0140-6736(09)61343-X.

      Article  CAS  Google Scholar 

    43. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51. https://doi.org/10.1056/NEJMoa0905561.

      Article  CAS  PubMed  Google Scholar 

    44. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvularatrial fibrillation. N Engl J Med. 2011;365(10):883–91. https://doi.org/10.1056/NEJMoa1009638.

      Article  CAS  PubMed  Google Scholar 

    45. Granger CB, Alexander JH, McMurray JJV, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92. https://doi.org/10.1056/NEJMoa1107039.

      Article  CAS  Google Scholar 

    46. Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104. https://doi.org/10.1056/NEJMoa1310907.

      Article  CAS  PubMed  Google Scholar 

    47. Kampouraki E, Kamali F. Pharmacogenetics of anticoagulants used for stroke prevention in patients with atrial fibrillation. Expert Opin Drug Metab Toxicol. 2019;15(6):449–58. https://doi.org/10.1080/17425255.2019.1623878.

      Article  CAS  PubMed  Google Scholar 

    48. Raymond J, Imbert L, Cousin T, Duflot T, Varin R, Wils J, et al. Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review. J Pers Med. 2021;11(1). https://doi.org/10.3390/jpm11010037.

    49. Parameswaran R, Al-Kaisey AM, Kalman JM. Catheter ablation for atrial fibrillation: current indications and evolving technologies. Nat Rev Cardiol. 2021;18(3):210–25. https://doi.org/10.1038/s41569-020-00451-x.

      Article  PubMed  Google Scholar 

    50. • Roselli C, Chaffin MD, Weng LC, Aeschbacher S, Ahlberg G, Albert CM, et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat Genet. 2018;50(9):1225–33. https://doi.org/10.1038/s41588-018-0133-9. This study represents the largest meta-analaysis of AF GWAS to date and identified a large number of loci associated with AF.

    51. Choi SH, Weng LC, Roselli C, Lin H, Haggerty CM, Shoemaker MB, et al. Association Between Titin Loss-of-Function Variants and Early-Onset Atrial Fibrillation. JAMA. 2018;320(22):2354–64. https://doi.org/10.1001/jama.2018.18179.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    52. Caglayan AO. Different aspects of atrial fibrillation genetics. Interact Cardiovasc Thorac Surg. 2010;11(6):779–83. https://doi.org/10.1510/icvts.2010.245910.

      Article  PubMed  Google Scholar 

    53. Wolff L. Familial Auricular Fibrillation. N Engl J Med. 1943;229(10):396–8. https://doi.org/10.1056/nejm194309022291002.

      Article  Google Scholar 

    54. Kopecky SL, Gersh BJ, McGoon MD, Whisnant JP, Holmes DR Jr., Ilstrup DM. The natural history of lone atrial fibrillation. A population-based study over three decades. N Engl J Med. 1987;317(11):669–74. https://doi.org/10.1056/NEJM198709103171104.

      Article  CAS  PubMed  Google Scholar 

    55. Brand FN, Abbott RD, Kannel WB, Wolf PA. Characteristics and prognosis of lone atrial fibrillation. 30-year follow-up in the Framingham study. JAMA. 1985;254(24):3449–53.

      Article  CAS  Google Scholar 

    56. Furberg CD, Psaty BM, Manolio TA, Gardin JM, Smith VE, Rautaharju PM. Prevalence of atrial fibrillation in elderly subjects (the cardiovascular health study). Am J Cardiol. 1994;74(3):236–41. https://doi.org/10.1016/0002-9149(94)90363-8.

      Article  CAS  PubMed  Google Scholar 

    57. Weng LC, Choi SH, Klarin D, Smith JG, Loh PR, Chaffin M, et al. Heritability of Atrial Fibrillation. Circ Cardiovasc Genet. 2017;10(6). https://doi.org/10.1161/CIRCGENETICS.117.001838.

    58. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19(9):581–90. https://doi.org/10.1038/s41576-018-0018-x.

      Article  CAS  PubMed  Google Scholar 

    59. Fox CS, Parise H, D’Agostino RBS, Lloyd-Jones DM, Vasan RS, Wang TJ, et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA. 2004;291(23):2851–5. https://doi.org/10.1001/jama.291.23.2851.

      Article  CAS  PubMed  Google Scholar 

    60. Ellinor PT, Yoerger DM, Ruskin JN, MacRae CA. Familial aggregation in lone atrial fibrillation. Hum Genet. 2005;118(2):179–84. https://doi.org/10.1007/s00439-005-0034-8.

      Article  PubMed  Google Scholar 

    61. Yang YQ, Zhang XL, Wang XH, Tan HW, Shi HF, Fang WY, et al. Familial aggregation of lone atrial fibrillation in the Chinese population. Intern Med. 2010;49(22):2385–91. https://doi.org/10.2169/internalmedicine.49.4130.

      Article  PubMed  Google Scholar 

    62. Arnar DO, Thorvaldsson S, Manolio TA, Thorgeirsson G, Kristjansson K, Hakonarson H, et al. Familial aggregation of atrial fibrillation in Iceland. Eur Heart J. 2006;27(6):708–12. https://doi.org/10.1093/eurheartj/ehi727.

      Article  PubMed  Google Scholar 

    63. Darbar D, Herron KJ, Ballew JD, Jahangir A, Gersh BJ, Shen WK, et al. Familial atrial fibrillation is a genetically heterogeneous disorder. J Am Coll Cardiol. 2003;41(12):2185–92. https://doi.org/10.1016/s0735-1097(03)00465-0.

      Article  PubMed  Google Scholar 

    64. Campuzano O, Brugada R. Genetics of familial atrial fibrillation. Europace. 2009;11(10):1267–71. https://doi.org/10.1093/europace/eup199.

      Article  PubMed  Google Scholar 

    65. Lubitz SA, Yi BA, Ellinor PT. Genetics of atrial fibrillation. Cardiol Clin. 2009;27(1):25–33. https://doi.org/10.1016/j.ccl.2008.09.007.

      Article  PubMed  PubMed Central  Google Scholar 

    66. Lubitz SA, Yin X, Fontes JD, Magnani JW, Rienstra M, Pai M, et al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA. 2010;304(20):2263–9. https://doi.org/10.1001/jama.2010.1690.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    67. Brugada R, Tapscott T, Czernuszewicz GZ, Marian AJ, Iglesias A, Mont L, et al. Identification of a genetic locus for familial atrial fibrillation. N Engl J Med. 1997;336(13):905–11. https://doi.org/10.1056/NEJM199703273361302.

      Article  CAS  PubMed  Google Scholar 

    68. Ellinor PT, Shin JT, Moore RK, Yoerger DM, MacRae CA. Locus for atrial fibrillation maps to chromosome 6q14-16. Circulation. 2003;107(23):2880–3. https://doi.org/10.1161/01.CIR.0000077910.80718.49.

      Article  PubMed  Google Scholar 

    69. Chen Y-H, Xu S-J, Bendahhou S, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299:251–4. https://doi.org/10.1126/science.1077771.

      Article  CAS  PubMed  Google Scholar 

    70. Olson TM, Michels VV, Ballew JD, Reyna SP, Karst ML, Herron KJ, Horton SC, Rodeheffer RJ, Anderson JL. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 2005;293:447–54. https://doi.org/10.1001/jama.293.4.447.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    71. Makiyama T, Akao M, Shizuta S, et al. A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation. J Am Coll Cardiol. 2008;52:1326–34. https://doi.org/10.1016/j.jacc.2008.07.013.

      Article  CAS  PubMed  Google Scholar 

    72. Watanabe H, Darbar D, Kaiser DW, Jiramongkolchai K, Chopra S, Donahue BS, Kannankeril PJ, Roden DM. Mutations in sodium channel β1- and β2-subunits associated with atrial fibrillation. Circ Arrhythm Electrophysiol. 2009;2:268–75. https://doi.org/10.1161/CIRCEP.108.779181.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    73. Oberti C, Wang L, Li L, Dong J, Rao S, Du W, Wang Q. Genome-wide linkage scan identifies a novel genetic locus on chromosome 5p13 for neonatal atrial fibrillation associated with sudden death and variable cardiomyopathy. Circulation. 2004;110:3753–9. https://doi.org/10.1161/01.CIR.0000150333.87176.C7.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    74. Gollob MH, Jones DL, Krahn AD, et al. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med. 2006;354:2677–88. https://doi.org/10.1056/NEJMoa052800.

      Article  CAS  PubMed  Google Scholar 

    75. Jiang J-Q, Shen F-F, Fang W-Y, Liu X, Yang Y-Q. Novel GATA4 mutations in lone atrial fibrillation. Int J Mol Med. 2011;28:1025–32. https://doi.org/10.3892/ijmm.2011.783.

      Article  CAS  PubMed  Google Scholar 

    76. Zhabyeyev P, Hiess F, Wang R, Liu Y, Wayne Chen SR, Oudit GY. S4153R is a gain-of-function mutation in the cardiac Ca(2+) release channel ryanodine receptor associated with catecholaminergic polymorphic ventricular tachycardia and paroxysmal atrial fibrillation. Can J Cardiol. 2013;29:993–6. https://doi.org/10.1016/j.cjca.2012.12.019.

      Article  PubMed  Google Scholar 

    77. Wang X-H, Huang C-X, Wang Q, Li R-G, Xu Y-J, Liu X, Fang W-Y, Yang Y-Q. A novel GATA5 loss-of-function mutation underlies lone atrial fibrillation. Int J Mol Med. 2013;31:43–50. https://doi.org/10.3892/ijmm.2012.1189.

      Article  CAS  PubMed  Google Scholar 

    78. Postma AV, van de Meerakker JBA, Mathijssen IB, Barnett P, Christoffels VM, Ilgun A, Lam J, Wilde AAM, Lekanne Deprez RH, Moorman AFM. A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res. 2008;102:1433–42. https://doi.org/10.1161/CIRCRESAHA.107.168294.

      Article  CAS  PubMed  Google Scholar 

    79. Kurabayashi M, Komuro I, Tsuchimochi H, Takaku F, Yazaki Y. Molecular cloning and characterization of human atrial and ventricular myosin alkali light chain cDNA clones. J Biol Chem. 1988;263:13930–6.

      Article  CAS  Google Scholar 

    80. Hodgson-Zingman DM, Karst ML, Zingman LV, Heublein DM, Darbar D, Herron KJ, Ballew JD, de Andrade M, Burnett JCJ, Olson TM. Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med. 2008;359:158–65. https://doi.org/10.1056/NEJMoa0706300.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    81. Orr N, Arnaout R, Gula LJ, et al. A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation. Nat Commun. 2016;7:11303. https://doi.org/10.1038/ncomms11303.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    82. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101:5–22. https://doi.org/10.1016/j.ajhg.2017.06.005.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    83. Gudbjartsson DF, Arnar DO, Helgadottir A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448:353–7. https://doi.org/10.1038/nature06007.

      Article  CAS  PubMed  Google Scholar 

    84. Kääb S, Darbar D, van Noord C, et al. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur Heart J. 2009;30:813–9. https://doi.org/10.1093/eurheartj/ehn578.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    85. Kirchhof P, Kahr PC, Kaese S, et al. PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ Cardiovasc Genet. 2011;4:123–33. https://doi.org/10.1161/CIRCGENETICS.110.958058.

      Article  CAS  PubMed  Google Scholar 

    86. Lubitz SA, Sinner MF, Lunetta KL, et al. Independent susceptibility markers for atrial fibrillation on chromosome 4q25. Circulation. 2010;122:976–84. https://doi.org/10.1161/CIRCULATIONAHA.109.886440.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    87. Lubitz SA, Lunetta KL, Lin H, et al. Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese. J Am Coll Cardiol. 2014;63:1200–10. https://doi.org/10.1016/j.jacc.2013.12.015.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    88. Body SC, Collard CD, Shernan SK, et al. Variation in the 4q25 chromosomal locus predicts atrial fibrillation after coronary artery bypass graft surgery. Circ Cardiovasc Genet. 2009;2:499–506. https://doi.org/10.1161/CIRCGENETICS.109.849075.

      Article  CAS  PubMed  Google Scholar 

    89. Husser D, Adams V, Piorkowski C, Hindricks G, Bollmann A. Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. J Am Coll Cardiol. 2010;55:747–53. https://doi.org/10.1016/j.jacc.2009.11.041.

      Article  CAS  PubMed  Google Scholar 

    90. Ellinor PT, Lunetta KL, Glazer NL, et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet. 2010;42:240–4. https://doi.org/10.1038/ng.537.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    91. Ellinor PT, Lunetta KL, Albert CM, et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet. 2012;44:670–5. https://doi.org/10.1038/ng.2261.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    92. Sinner MF, Tucker NR, Lunetta KL, et al. Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. Circulation. 2014;130:1225–35. https://doi.org/10.1161/CIRCULATIONAHA.114.009892.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    93. Gudbjartsson DF, Holm H, Gretarsdottir S, et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet. 2009;41:876–8. https://doi.org/10.1038/ng.417.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    94. Benjamin EJ, Rice KM, Arking DE, et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet. 2009;41:879–81. https://doi.org/10.1038/ng.416.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    95. Christophersen IE, Rienstra M, Roselli C, et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat Genet. 2017;49:946–52. https://doi.org/10.1038/ng.3843.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    96. • Nielsen JB, Thorolfsdottir RB, Fritsche LG, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet. 2018;50:1234–39. PMID 30061737. https://doi.org/10.1038/s41588-018-0171-3A large scale GWAS identifying novel AF risk variants with function analysis to suggest possible biologic role.

    97. Tucker NR, Clauss S, Ellinor PT. Common variation in atrial fibrillation: navigating the path from genetic association to mechanism. Cardiovasc Res. 2016;109:493–501. https://doi.org/10.1093/cvr/cvv283.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    98. Nadadur RD, Broman MT, Boukens B, et al. Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm. Sci Transl Med. 2016;8:354ra115. PMID 27582060. https://doi.org/10.1126/scitranslmed.aaf4891.

    99. O’Sullivan JW, Shcherbina A, Justesen JM, Turakhia M, Perez M, Wand H, et al. Combining clinical and polygenic risk improves stroke prediction among individuals with atrial fibrillation. Circ Genomic Precis Med. 2021. https://doi.org/10.1161/CIRCGEN.120.003168.

      Article  Google Scholar 

    100. • Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50:1219–24. PMID 30104762. https://doi.org/10.1038/s41588-018-0183-zThis study illustrates the clinical utility of multiple PRS including AF.

    101. Choe WS, Kang JH, Choi EK, Shin SY, Lubitz SA, Ellinor PT, Oh S, Lim HE. A genetic risk score for atrial fibrillation predicts the response to catheter ablation. Korean Circ J. 2019;49:338–49. https://doi.org/10.4070/kcj.2018.0161.

      Article  CAS  PubMed  Google Scholar 

    102. Kertai MD, Mosley JD, He J, Ramakrishnan A, Abdelmalak M, Hong Y, et al. Predictive accuracy of a polygenic risk score for postoperative atrial fibrillation after cardiac surgery. Circ Genomic Precis Med. 2021. https://doi.org/10.1161/CIRCGEN.120.003269.

      Article  Google Scholar 

    103. Weng LC, Preis SR, Hulme OL, et al. Genetic predisposition, clinical risk factor burden, and lifetime risk of atrial fibrillation. Circulation. 2018;137:1027–38. https://doi.org/10.1161/CIRCULATIONAHA.117.031431.

      Article  PubMed  Google Scholar 

    104. Lazarte J, Dron JS, Mcintyre AD, Allan C, Gula LJ, Tang AS, et al. l P. CJC Open. 2021. https://doi.org/10.1016/j.cjco.2021.02.001. PMID 34169254.

    105. Gudbjartsson DF, Helgason H, Gudjonsson SA, et al. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet. 2015;47:435–44. https://doi.org/10.1038/ng.3247.

      Article  CAS  PubMed  Google Scholar 

    106. Lubitz SA, Brody JA, Bihlmeyer NA, et al. Whole exome sequencing in atrial fibrillation. PLoS Genet. 1016;12:e1006284. 108. PMID 27589061. https://doi.org/10.1371/journal.pgen.1006284.

    107. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8:1308–39. https://doi.org/10.1016/j.hrthm.2011.05.020.

      Article  Google Scholar 

    108. Wojcik GL, Graff M, Nishimura KK, et al. The PAGE study: how genetic diversity improves our understanding of the architecture of complex traits. 2017. bioRxiv 188094. https://doi.org/10.1101/188094.

    109. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51:584–91. https://doi.org/10.1038/s41588-019-0379-x.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    110. Low S-K, Takahashi A, Ebana Y, et al. Identification of six new genetic loci associated with atrial fibrillation in the Japanese population. Nat Genet. 2017;49:953–8. https://doi.org/10.1038/ng.3842.

      Article  CAS  PubMed  Google Scholar 

    111. Lee J-Y, Kim T-H, Yang P-S, et al. Korean atrial fibrillation network genome-wide association study for early-onset atrial fibrillation identifies novel susceptibility loci. Eur Heart J. 2017;38:2586–94. https://doi.org/10.1093/eurheartj/ehx213.

      Article  CAS  PubMed  Google Scholar 

    112. Mostafavi H, Harpak A, Agarwal I, Conley D, Pritchard JK, Przeworski M. Variable prediction accuracy of polygenic scores within an ancestry group. Elife. 2020;9:1–52. https://doi.org/10.7554/eLife.48376.

      Article  Google Scholar 

    113. Hu Z, Zou D. Genotype-phenotype associations in atrial fibrillation: meta-analysis. J Interv Card Electrophysiol. 2019;54:283–8. https://doi.org/10.1007/s10840-018-0484-2.

      Article  PubMed  Google Scholar 

    114. Burridge PW, Matsa E, Shukla P, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855–60. https://doi.org/10.1038/nmeth.2999.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    115. Devalla HD, Schwach V, Ford JW, et al. Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med. 2015;7:394–410. https://doi.org/10.15252/emmm.201404757.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    116. Cerignoli F, Charlot D, Whittaker R, et al. High throughput measurement of Ca2+ dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. J Pharmacol Toxicol Methods. 2012;66:246–56. https://doi.org/10.1016/j.vascn.2012.08.167.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    117. McKeithan WL, Savchenko A, Yu MS, Cerignoli F, Bruyneel AAN, Price JH, Colas AR, Miller EW, Cashman JR, Mercola M. An automated platform for assessment of congenital and drug-induced arrhythmia with hiPSC-derived cardiomyocytes. Front Physiol. 2017;8:766. https://doi.org/10.3389/fphys.2017.00766.

      Article  PubMed  PubMed Central  Google Scholar 

    118. Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I. Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium. 2000;27:97–106. https://doi.org/10.1054/ceca.1999.0095.

      Article  CAS  PubMed  Google Scholar 

    119. Liu P, Miller EW. Electrophysiology, unplugged: imaging membrane potential with fluorescent indicators. Acc Chem Res. 2020;53:11–9. https://doi.org/10.1021/acs.accounts.9b00514.

      Article  CAS  PubMed  Google Scholar 

    120. McKeithan WL, Feyen DAM, Bruyneel AAN, et al. Reengineering an antiarrhythmic drug using patient hiPSC cardiomyocytes to improve therapeutic potential and reduce toxicity. Cell Stem Cell. 2020;27:813-821.e6. https://doi.org/10.1016/j.stem.2020.08.003.

      Article  CAS  PubMed  Google Scholar 

    121. Cashman JR, Ryan D, McKeithan WL, et al. Antiarrhythmic hit to lead refinement in a dish using patient-derived iPSC cardiomyocytes. J Med Chem. 2021. https://doi.org/10.1021/acs.jmedchem.0c01545.

      Article  PubMed  Google Scholar 

    122. Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development. 1993;118:719–29.

      Article  CAS  Google Scholar 

    123. Azpiazu N, Frasch M. tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev. 1993;7:1325–40. https://doi.org/10.1101/gad.7.7b.1325.

      Article  CAS  PubMed  Google Scholar 

    124. Cripps RM, Olson EN. Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol. 2002;246:14–28. https://doi.org/10.1006/dbio.2002.0666.

      Article  CAS  PubMed  Google Scholar 

    125. Bodmer R, Frasch M. Chapter 1.2 - Development and Aging of the Drosophila Heart. In: Rosenthal N, Harvey RP, editors. Heart Development and Regeneration. Academic Press; 2010. p. 47–86. ISBN 9780123813329. https://doi.org/10.1016/B978-0-12-381332-9.00002-5. https://www.sciencedirect.com/science/article/pii/B9780123813329000025.

    126. Cammarato A, Ahrens CH, Alayari NN, et al. A mighty small heart: the cardiac proteome of adult Drosophila melanogaster. PLoS One. 2011;6:e18497. PMID 21541028. https://doi.org/10.1371/journal.pone.0018497.

    127. Ocorr K, Reeves NL, Wessells RJ, et al. KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proc Natl Acad Sci U S A. 2007;104:3943–8. https://doi.org/10.1073/pnas.0609278104.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    128. Ocorr K, Zambon A, Nudell Y, Pineda S, Diop S, Tang M, et al. Age-dependent electrical and morphological remodeling of the Drosophila heart caused by hERG/seizure mutations. PLoS Genet. 2017;13:e1006786. PMID 17125816. https://doi.org/10.1371/journal.pgen.1006786.

    129. Pineda S, Nikolova-Krstevski V, Leimena C, et al. Conserved role of the large conductance calcium-activated potassium channel, KCa1.1, in Sinus node function and arrhythmia risk. Circ Genomic Precis Med. 2021;14:e003144. PMID 33629867. https://doi.org/10.1161/CIRCGEN.120.003144.

    130. Ocorr K, Akasaka T, Bodmer R. Age-related cardiac disease model of Drosophila. Mech Ageing Dev. 2007;128:112–6. https://doi.org/10.1016/j.mad.2006.11.023.

      Article  CAS  PubMed  Google Scholar 

    131. Nishimura M, Ocorr K, Bodmer R, Cartry J. Drosophila as a model to study cardiac aging. Exp Gerontol. 2011;46:326–30. https://doi.org/10.1016/j.exger.2010.11.035.

      Article  CAS  PubMed  Google Scholar 

    132. Ocorr K, Vogler G, Bodmer R. Methods to assess Drosophila heart development, function and aging. Methods. 2014;68:265–72. https://doi.org/10.1016/j.ymeth.2014.03.031.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    133. Na J, Musselman LP, Pendse J, Baranski TJ, Bodmer R, Ocorr K, et al. A Drosophila model of high sugar diet-induced cardiomyopathy. PLoS Genet. 2013;9:e1003175. PMID 23326243. https://doi.org/10.1371/journal.pgen.1003175.

    134. Birse RT, Choi J, Reardon K, Rodriguez J, Graham S, Diop S, Ocorr K, Bodmer R, Oldham S. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab. 2010;12:533–44. https://doi.org/10.1016/j.cmet.2010.09.014.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    135. Diop SB, Bisharat-Kernizan J, Birse RT, Oldham S, Ocorr K, Bodmer R. PGC-1/spargel counteracts high-fat-diet-induced obesity and cardiac lipotoxicity downstream of TOR and brummer ATGL lipase. Cell Rep. 2015;10:1572–84. https://doi.org/10.1016/j.celrep.2015.02.022.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    136. Fink M, Callol-Massot C, Chu A, Ruiz-Lozano P, Izpisua Belmonte JC, Giles W, Bodmer R, Ocorr K. A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques. 2009;46:101–13. https://doi.org/10.2144/000113078.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    137. Vogler G. FlyHearts-tdtK-Rscripts: first release of the R tdtK script. 2021. https://doi.org/10.5281/zenodo.4749935.

    138. Theis JL, Vogler G, Missinato MA, et al. Patient-specific genomics and cross-species functional analysis implicate LRP2 in hypoplastic left heart syndrome. Elife. 2020. https://doi.org/10.7554/eLife.59554.

      Article  PubMed  PubMed Central  Google Scholar 

    139. Hall AW, Chaffin M, Roselli C, et al. Epigenetic analyses of human left atrial tissue identifies gene networks underlying atrial fibrillation. Circ Genomic Precis Med. 2020;588–98. PMID 33155827. https://doi.org/10.1161/CIRCGEN.120.003085.

    140. Shiffman D, Perez MV, Bare LA, Louie JZ, Arellano AR, Devlin JJ. Genetic risk for atrial fibrillation could motivate patient adherence to warfarin therapy: a cost effectiveness analysis. BMC Cardiovasc Disord. 2015;15:104. https://doi.org/10.1186/s12872-015-0100-7.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    141. Lubitz SA, Parsons OE, Anderson CD, et al. Atrial fibrillation genetic risk and ischemic stroke mechanisms. Stroke. 2017;48:1451–6. https://doi.org/10.1161/STROKEAHA.116.016198.

      Article  PubMed  PubMed Central  Google Scholar 

    142. Pulit SL, Weng LC, McArdle PF, et al. Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes. Neurol Genet. 2018;4:1–8. https://doi.org/10.1212/NXG.0000000000000293.

      Article  Google Scholar 

    143. Christopoulos G, Graff-Radford J, Lopez CL, et al. Artificial intelligence-electrocardiography to predict incident atrial fibrillation: a population-based study. Circ Arrhythm Electrophysiol. 2020;13:e009355. PMID 33185118. https://doi.org/10.1161/CIRCEP.120.009355.

    Download references

    Acknowledgments

    EDM is supported by UL1TR002550 from NCATS/NIH to The Scripps Research Institute. Dr. Ocorr has a patent US 9,186,093 B2 for the Semi-automatic Optical Heartbeat Analysis, licensed to None, available for free to researchers at www.sohasoftware.com.

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to Evan D. Muse.

    Ethics declarations

    Conflict of Interest

    Evan D. Muse is a co-founder of GeneXwell. The other authors declare no competing interests.

    Human and Animal Rights and Informed Consent

    This article does not contain any data with human or animal subjects performed by any of the authors.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    This article is part of the Topical Collection on Cardiovascular Genomics

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Yoo, D.H., Bodmer, R., Ocorr, K. et al. Atrial Fibrillation Genomics: Discovery and Translation. Curr Cardiol Rep 23, 164 (2021). https://doi.org/10.1007/s11886-021-01597-x

    Download citation

    • Accepted:

    • Published:

    • DOI: https://doi.org/10.1007/s11886-021-01597-x

    Keywords

    Navigation