Skip to main content

Advertisement

Log in

Relief of Ischemia in Ischemic Cardiomyopathy

  • Myocardial Disease (A Abbate and G Sinagra, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Ischemic heart disease is among the most common causes of morbidity and mortality worldwide. In its stable manifestation, obstructing coronary artery stenoses prevent myocardial blood flow from matching metabolic needs of the heart under exercise conditions, which manifests clinically as dyspnea or chest pain. Prolonged bouts of ischemia may result in permanent myocardial dysfunction, heart failure, and eventually reduced survival. The aim of the present work is to review currently available approaches to provide relief of ischemia in stable coronary artery disease (CAD).

Recent Findings

Several pharmacological and interventional approaches have proven effectiveness in reducing the burden of ischemia in stable CAD and allow for symptom control and quality of life improvement. However, substantial evidence in favor of improved survival with ischemia relief is lacking, and recently published randomized controlled trial suggests that only selected groups of patients may substantially benefit from this approach.

Summary

Pharmacological treatments aimed at reducing ischemia were shown to significantly reduce ischemic symptoms but failed to provide prognostic benefit. Myocardial revascularization is able to re-establish adequate coronary artery flow and was shown to improve survival in selected groups of patients, i.e., those with significant left main CAD or severe left ventricular dysfunction in multivessel CAD. Outside the previously mentioned categories, revascularization appears to improve symptoms control over medical therapy, but does not confer prognostic advantage. More studies are needed to elucidate the role of systematic invasive functional testing to identify individuals more likely to benefit from revascularization and to evaluate the prognostic role of chronic total occlusion recanalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2012;60(24):e44–164.

    PubMed  Google Scholar 

  2. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: the task force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2019;41(3):407–77. Available from:. https://doi.org/10.1093/eurheartj/ehz425.

    Article  Google Scholar 

  3. Libby P, Pasterkamp G, Crea F, Jang I-K. Reassessing the mechanisms of acute coronary syndromes. Circ Res. 2019;124(1):150–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol. 2018;72(18):2231–64.

    PubMed  Google Scholar 

  5. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.

    PubMed  Google Scholar 

  6. Barbato E, Toth GG, Johnson NP, Pijls NHJ, Fearon WF, Tonino PAL, et al. A prospective natural history study of coronary atherosclerosis using fractional flow reserve. J Am Coll Cardiol. 2016;68(21):2247–55.

    PubMed  Google Scholar 

  7. Kaski J-C, Crea F, Gersh BJ, Camici PG. Reappraisal of ischemic heart disease. Circulation. 2018;138(14):1463–80.

    PubMed  Google Scholar 

  8. Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974;34(1):48–55. Available from:. https://doi.org/10.1016/0002-9149(74)90092-7.

    Article  CAS  PubMed  Google Scholar 

  9. Ardehali A, Ports TA. Myocardial oxygen supply and demand. Chest. 1990;98(3):699–705.

    CAS  PubMed  Google Scholar 

  10. Rosano GMC, Fini M, Caminiti G, Barbaro G. Cardiac metabolism in myocardial ischemia. Curr Pharm Des. 2008;14(25):2551–62.

    CAS  PubMed  Google Scholar 

  11. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev. 1989;69(4):1049–169.

    CAS  PubMed  Google Scholar 

  12. Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987;59(7):23C–30C.

    CAS  PubMed  Google Scholar 

  13. Wijns W, Serruys PW, Slager CJ, Grimm J, Krayenbuehl HP, Hugenholtz PG, et al. Effect of coronary occlusion during percutaneous transluminal angioplasty in humans on left ventricular chamber stiffness and regional diastolic pressure-radius relations. J Am Coll Cardiol. 1986;7(3):455–63.

    CAS  PubMed  Google Scholar 

  14. Ohara T, Little WC. Evolving focus on diastolic dysfunction in patients with coronary artery disease. Curr Opin Cardiol. 2010;25(6):613–21.

    PubMed  Google Scholar 

  15. Guaricci AI, Bulzis G, Pontone G, Scicchitano P, Carbonara R, Rabbat M, et al. Current interpretation of myocardial stunning. Trends Cardiovasc Med. 2018;28(4):263–71.

    PubMed  Google Scholar 

  16. Foreman RD, Garrett KM, Blair RW. Mechanisms of cardiac pain. Compr Physiol. 2015;5(2):929–60.

    PubMed  Google Scholar 

  17. Ryan MJ, Perera D. Identifying and managing hibernating myocardium: what’s new and what remains unknown? Curr Heart Fail Rep. 2018;15(4):214–23.

    PubMed  PubMed Central  Google Scholar 

  18. Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989;117(1):211–21.

    CAS  PubMed  Google Scholar 

  19. Garcia MJ, Kwong RY, Scherrer-Crosbie M, Taub CC, Blankstein R, Lima J, et al. State of the art: imaging for myocardial viability: a scientific statement from the American Heart Association. Circ Cardiovasc Imaging. 2020;13(7):e000053.

    PubMed  Google Scholar 

  20. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107(23):2900–7.

    PubMed  Google Scholar 

  21. Zipes DP, Wellens HJ. Sudden cardiac death. Circulation. 1998;98(21):2334–51.

    CAS  PubMed  Google Scholar 

  22. Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017;135(11):1075–92.

    PubMed  Google Scholar 

  23. Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Maas AHEM, et al. An EAPCI Expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European society of cardiology working group on coronary pathophysiology & microcirculation endorsed by coronary vasomotor disorders international study group. Eur Heart J. 2020;41(37):3504–20. Available from. https://doi.org/10.1093/eurheartj/ehaa503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Husted SE, Ohman EM. Pharmacological and emerging therapies in the treatment of chronic angina. Lancet. 2015;386(9994):691–701.

    CAS  PubMed  Google Scholar 

  25. Murad F. Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest. 1986;78(1):1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994;368(6474):850–3.

    CAS  PubMed  Google Scholar 

  27. Parker JD, Parker JO. Nitrate therapy for stable angina pectoris. N Engl J Med. 1998;338(8):520–31.

    CAS  PubMed  Google Scholar 

  28. Bøttcher M, Madsen MM, Randsbaek F, Refsgaard J, Dørup I, Sørensen K, et al. Effect of oral nitroglycerin and cold stress on myocardial perfusion in areas subtended by stenosed and nonstenosed coronary arteries. Am J Cardiol. 2002;89(9):1019–24.

    PubMed  Google Scholar 

  29. Thadani U. Challenges with nitrate therapy and nitrate tolerance: prevalence, prevention, and clinical relevance. Am J Cardiovasc Drugs. 2014;14(4):287–301.

    CAS  PubMed  Google Scholar 

  30. Rousan TA, Mathew ST, Thadani U. Drug therapy for stable angina pectoris. Drugs. 2017;77(3):265–84.

    CAS  PubMed  Google Scholar 

  31. Thadani U, Davidson C, Singleton W, Taylor SH. Comparison of the immediate effects of five beta-adrenoreceptor-blocking drugs with different ancillary properties in angina pectoris. N Engl J Med. 1979;300(14):750–5.

    CAS  PubMed  Google Scholar 

  32. Huang HL, Fox KAA. The impact of beta-blockers on mortality in stable angina: a meta-analysis. Scott Med J. 2012;57(2):69–75.

    CAS  PubMed  Google Scholar 

  33. Bangalore S, Steg G, Deedwania P, Crowley K, Eagle KA, Goto S, et al. β-Blocker use and clinical outcomes in stable outpatients with and without coronary artery disease. JAMA. 2012;308(13):1340–9.

    CAS  PubMed  Google Scholar 

  34. Chatterjee S, Biondi-Zoccai G, Abbate A, D’Ascenzo F, Castagno D, Van Tassell B, et al. Benefits of β blockers in patients with heart failure and reduced ejection fraction: network meta-analysis. BMJ. 2013;346:f55.

    PubMed  PubMed Central  Google Scholar 

  35. Abernethy DR, Schwartz JB. Calcium-antagonist drugs. N Engl J Med. 1999;341(19):1447–57.

    CAS  PubMed  Google Scholar 

  36. Rehnqvist N, Hjemdahl P, Billing E, Björkander I, Eriksson SV, Forslund L, et al. Effects of metoprolol vs verapamil in patients with stable angina pectoris. The Angina Prognosis Study in Stockholm (APSIS). Eur Heart J. 1996;17(1):76–81.

    CAS  PubMed  Google Scholar 

  37. Poole-Wilson PA, Lubsen J, Kirwan B-A, van Dalen FJ, Wagener G, Danchin N, et al. Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with stable angina requiring treatment (ACTION trial): randomised controlled trial. Lancet. 2004;364(9437):849–57.

    CAS  PubMed  Google Scholar 

  38. Joannides R, Moore N, Iacob M, Compagnon P, Lerebours G, Menard J-F, et al. Comparative effects of ivabradine, a selective heart rate-lowering agent, and propranolol on systemic and cardiac haemodynamics at rest and during exercise. Br J Clin Pharmacol. 2006;61(2):127–37.

    CAS  PubMed  Google Scholar 

  39. Tardif J-C, Ford I, Tendera M, Bourassa MG, Fox K. Efficacy of ivabradine, a new selective I(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J. 2005;26(23):2529–36.

    CAS  PubMed  Google Scholar 

  40. Werdan K, Ebelt H, Nuding S, Höpfner F, Hack G, Müller-Werdan U. Ivabradine in combination with beta-blocker improves symptoms and quality of life in patients with stable angina pectoris: results from the ADDITIONS study. Clin Res Cardiol. 2012;101(5):365–73.

    CAS  PubMed  Google Scholar 

  41. Fox K, Ford I, Steg PG, Tendera M, Ferrari R. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9641):807–16.

    CAS  PubMed  Google Scholar 

  42. Tarkin JM, Kaski JC. Nicorandil and long-acting nitrates: vasodilator therapies for the management of chronic stable angina pectoris. Eur Cardiol. 2018;13(1):23–8.

    PubMed  PubMed Central  Google Scholar 

  43. Thadani U. Can nicorandil treat angina pectoris effectively? Nat Clin Pract Cardiovasc Med. 2005;2(4):186–7.

    CAS  PubMed  Google Scholar 

  44. Cocco G, Rousseau MF, Bouvy T, Cheron P, Williams G, Detry JM, et al. Effects of a new metabolic modulator, ranolazine, on exercise tolerance in angina pectoris patients treated with beta-blocker or diltiazem. J Cardiovasc Pharmacol. 1992;20(1):131–8.

    CAS  PubMed  Google Scholar 

  45. Belardinelli L, Shryock JC, Fraser H. Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart. 2006;92 Suppl 4(Suppl 4):iv6–14.

    CAS  PubMed  Google Scholar 

  46. Thadani U, Ezekowitz M, Fenney L, Chiang YK. Double-blind efficacy and safety study of a novel anti-ischemic agent, ranolazine, versus placebo in patients with chronic stable angina pectoris. Ranolazine Study Group. Circulation. 1994;90(2):726–34.

    CAS  PubMed  Google Scholar 

  47. Chaitman BR, Skettino SL, Parker JO, Hanley P, Meluzin J, Kuch J, et al. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J Am Coll Cardiol. 2004;43(8):1375–82.

    CAS  PubMed  Google Scholar 

  48. Peng S, Zhao M, Wan J, Fang Q, Fang D, Li K. The efficacy of trimetazidine on stable angina pectoris: a meta-analysis of randomized clinical trials. Int J Cardiol. 2014;177(3):780–5.

    PubMed  Google Scholar 

  49. Marzilli M, Klein WW. Efficacy and tolerability of trimetazidine in stable angina: a meta-analysis of randomized, double-blind, controlled trials. Coron Artery Dis. 2003;14(2):171–9.

    PubMed  Google Scholar 

  50. Driessen RS, Danad I, Stuijfzand WJ, Schumacher SP, Knuuti J, Mäki M, et al. Impact of revascularization on absolute myocardial blood flow as assessed by serial [(15)O]H(2)O positron emission tomography imaging: a comparison with fractional flow reserve. Circ Cardiovasc Imaging. 2018;11(5):e007417.

    PubMed  Google Scholar 

  51. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16.

    CAS  PubMed  Google Scholar 

  52. Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Boden WE, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020;382(15):1395–407 Main results of the ISCHEMIA Trial, again showing comparable outcomes for revascularization of non left main stem lesions in stable coronary artery disease and optimal medical therapy.

    PubMed  PubMed Central  Google Scholar 

  53. Al-Lamee R, Thompson D, Dehbi H-M, Sen S, Tang K, Davies J, et al. Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet. 2018;391(10115):31–40 First randomized-controlled study on myocardial revascularization to include a sham procedure to serve as placebo arm. It showed substantial placebo effect associated with the procedure.

    PubMed  Google Scholar 

  54. Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F. van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.

    CAS  PubMed  Google Scholar 

  55. Xaplanteris P, Fournier S, Pijls NHJ, Fearon WF, Barbato E, Tonino PAL, et al. Five-year outcomes with pci guided by fractional flow reserve. N Engl J Med. 2018;379(3):250–9 Five year follow up of the FAME 2 study, showing that FFR-guided revascularization provides a significant prognostic advantage over optimal medical therapy in stable ischemic heart disease.

    PubMed  Google Scholar 

  56. Rahimtoola SH. Coronary bypass surgery for chronic angina--1981. A perspective. Circulation. 1982;65(2):225–41.

    CAS  PubMed  Google Scholar 

  57. Reul GJJ, Cooley DA, Wukasch DC, Kyger ER 3rd, Sandiford FM, Hallman GL, et al. Long-term survival following coronary artery bypass. Analysis of 4,522 consecutive patients. Arch Surg. 1975;110(11):1419–24.

    PubMed  Google Scholar 

  58. Spencer FC, Isom OW, Glassman E, Boyd AD, Engelman RM, Reed GE, et al. The long-term influence of coronary bypass grafts on myocardial infarction and survival. Ann Surg. 1974;180(4):439–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Long-term results of prospective randomised study of coronary artery bypass surgery in stable angina pectoris. European Coronary Surgery Study Group. Lancet. 1982;2(8309):1173–80.

  60. Detre K, Peduzzi P, Murphy M, Hultgren H, Thomsen J, Oberman A, et al. Effect of bypass surgery on survival in patients in low- and high-risk subgroups delineated by the use of simple clinical variables. Circulation. 1981;63(6):1329–38.

    CAS  PubMed  Google Scholar 

  61. Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass surgery. Survival data. Circulation. 1983;68(5):939–50.

  62. Yusuf S, Zucker D, Peduzzi P, Fisher LD, Takaro T, Kennedy JW, et al. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the coronary artery bypass graft surgery trialists collaboration. Lancet. 1994;344(8922):563–70 Provides formal demonstration of prognostic impact of revascularization of the left main stem.

    CAS  PubMed  Google Scholar 

  63. Bittl JA, He Y, Jacobs AK, Yancy CW, Normand S-LT. Bayesian methods affirm the use of percutaneous coronary intervention to improve survival in patients with unprotected left main coronary artery disease. Circulation. 2013;127(22):2177–85.

    PubMed  Google Scholar 

  64. Tam DY, Bakaeen F, Feldman DN, Kolh P, Lanza GA, Ruel M, et al. Modality selection for the revascularization of left main disease. Can J Cardiol. 2019;35(8):983–92.

    PubMed  Google Scholar 

  65. Azzalini L, Stone GW. Percutaneous coronary intervention or surgery for unprotected left main disease: excel trial at 5 years. Interv Cardiol Clin. 2020;9(4):419–32.

    PubMed  Google Scholar 

  66. Feldman DN, Gade CL, Slotwiner AJ, Parikh M, Bergman G, Wong SC, et al. Comparison of outcomes of percutaneous coronary interventions in patients of three age groups (<60, 60 to 80, and >80 years) (from the New York State Angioplasty Registry). Am J Cardiol. 2006;98(10):1334–9.

    PubMed  Google Scholar 

  67. Katritsis DG, Ioannidis JPA. Percutaneous coronary intervention versus conservative therapy in nonacute coronary artery disease: a meta-analysis. Circulation. 2005;111(22):2906–12.

    PubMed  Google Scholar 

  68. Sedlis SP, Hartigan PM, Teo KK, Maron DJ, Spertus JA, Mancini GBJ, et al. Effect of PCI on Long-term survival in patients with stable ischemic heart disease. N Engl J Med. 2015;373(20):1937–46 Long-term follow up of the COURAGE trial, showing the lack of advantage of percutaneous revascularization over optimal medical therapy in stable ischemic heart disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sedlis SP, Jurkovitz CT, Hartigan PM, Kolm P, Goldfarb DS, Lorin JD, et al. Health status and quality of life in patients with stable coronary artery disease and chronic kidney disease treated with optimal medical therapy or percutaneous coronary intervention (post hoc findings from the COURAGE trial). Am J Cardiol. 2013;112(11):1703–8.

    PubMed  PubMed Central  Google Scholar 

  70. Shaw LJ, Berman DS, Maron DJ, Mancini GBJ, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the clinical outcomes utilizing revascularization and aggressive drug evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117(10):1283–91.

    PubMed  Google Scholar 

  71. Maron DJ, Hochman JS, O’Brien SM, Reynolds HR, Boden WE, Stone GW, et al. International study of comparative health effectiveness with medical and invasive approaches (ISCHEMIA) trial: rationale and design. Am Heart J. 2018;201:124–35.

    PubMed  Google Scholar 

  72. Spertus JA, Jones PG, Maron DJ, O’Brien SM, Reynolds HR, Rosenberg Y, et al. Health-status outcomes with invasive or conservative care in coronary disease. N Engl J Med. 2020;382(15):1408–19.

    PubMed  PubMed Central  Google Scholar 

  73. Bangalore S, Maron DJ, O’Brien SM, Fleg JL, Kretov EI, Briguori C, et al. Management of coronary disease in patients with advanced kidney disease. N Engl J Med. 2020;382(17):1608–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Al-Lamee R, Howard JP, Shun-Shin MJ, Thompson D, Dehbi H-M, Sen S, et al. Fractional flow reserve and instantaneous wave-free ratio as predictors of the placebo-controlled response to percutaneous coronary intervention in stable single-vessel coronary artery disease. Circulation. 2018;138(17):1780–92.

    PubMed  Google Scholar 

  75. Lima RSL, Watson DD, Goode AR, Siadaty MS, Ragosta M, Beller GA, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol. 2003;42(1):64–70.

    PubMed  Google Scholar 

  76. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation. 1995;92(8):2333–42.

    CAS  PubMed  Google Scholar 

  77. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek J, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334(26):1703–8.

    CAS  PubMed  Google Scholar 

  78. Ciccarelli G, Barbato E, Toth GG, Gahl B, Xaplanteris P, Fournier S, et al. Angiography versus hemodynamics to predict the natural history of coronary stenoses: fractional flow reserve versus angiography in multivessel evaluation 2 substudy. Circulation. 2018;137(14):1475–85.

    PubMed  Google Scholar 

  79. Gheorghiade M, Sopko G, De Luca L, Velazquez EJ, Parker JD, Binkley PF, et al. Navigating the crossroads of coronary artery disease and heart failure. Circulation. 2006;114(11):1202–13.

    PubMed  Google Scholar 

  80. Pitt M, Lewis ME, Bonser RS. Coronary artery surgery for ischemic heart failure: risks, benefits, and the importance of assessment of myocardial viability. Prog Cardiovasc Dis. 2001;43(5):373–86.

    CAS  PubMed  Google Scholar 

  81. O’Connor CM, Velazquez EJ, Gardner LH, Smith PK, Newman MF, Landolfo KP, et al. Comparison of coronary artery bypass grafting versus medical therapy on long-term outcome in patients with ischemic cardiomyopathy (a 25-year experience from the Duke cardiovascular disease databank). Am J Cardiol. 2002;90(2):101–7.

    PubMed  Google Scholar 

  82. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med. 2011;364(17):1607–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Velazquez EJ, Lee KL, Jones RH, Al-Khalidi HR, Hill JA, Panza JA, et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med. 2016;374(16):1511–20 Long term follow up of the STICH trial.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364(17):1617–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Panza JA, Ellis AM, Al-Khalidi HR, Holly TA, Berman DS, Oh JK, et al. Myocardial viability and long-term outcomes in ischemic cardiomyopathy. N Engl J Med. 2019;381(8):739–48.

    PubMed  PubMed Central  Google Scholar 

  86. Azzalini L, Jolicoeur EM, Pighi M, Millán X, Picard F, Tadros V-X, et al. Epidemiology, management strategies, and outcomes of patients with chronic total coronary occlusion. Am J Cardiol. 2016;118(8):1128–35.

    PubMed  Google Scholar 

  87. Werner GS, Surber R, Ferrari M, Fritzenwanger M, Figulla HR. The functional reserve of collaterals supplying long-term chronic total coronary occlusions in patients without prior myocardial infarction. Eur Heart J. 2006;27(20):2406–12.

    PubMed  Google Scholar 

  88. Råmunddal T, Hoebers LP, Henriques JPS, Dworeck C, Angerås O, Odenstedt J, et al. Prognostic impact of chronic total occlusions: a report from SCAAR (Swedish coronary angiography and angioplasty registry). JACC Cardiovasc Interv. 2016;9(15):1535–44.

    PubMed  Google Scholar 

  89. Christakopoulos GE, Christopoulos G, Carlino M, Jeroudi OM, Roesle M, Rangan BV, et al. Meta-analysis of clinical outcomes of patients who underwent percutaneous coronary interventions for chronic total occlusions. Am J Cardiol. 2015;115(10):1367–75.

    PubMed  Google Scholar 

  90. Werner GS, Martin-Yuste V, Hildick-Smith D, Boudou N, Sianos G, Gelev V, et al. A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions. Eur Heart J. 2018;39(26):2484–93.

    CAS  PubMed  Google Scholar 

  91. Obedinskiy AA, Kretov EI, Boukhris M, Kurbatov VP, Osiev AG, Ibn Elhadj Z, et al. The IMPACTOR-CTO Trial. JACC Cardiovasc Interv. United States. 2018;11:1309–11.

    PubMed  Google Scholar 

  92. Lee S-W, Lee PH, Ahn J-M, Park D-W, Yun S-C, Han S, et al. Randomized trial evaluating percutaneous coronary intervention for the treatment of chronic total occlusion. Circulation. 2019;139(14):1674–83.

    PubMed  Google Scholar 

  93. Brilakis ES, Mashayekhi K, Tsuchikane E, Abi Rafeh N, Alaswad K, Araya M, et al. Guiding principles for chronic total occlusion percutaneous coronary intervention. Circulation. 2019;140(5):420–33.

    PubMed  Google Scholar 

  94. Kennedy JA, Beck-Oldach K, McFadden-Lewis K, Murphy GA, Wong YW, Zhang Y, et al. Effect of the anti-anginal agent, perhexiline, on neutrophil, valvular and vascular superoxide formation. Eur J Pharmacol. 2006;531(1–3):13–9.

    CAS  PubMed  Google Scholar 

  95. Schmidt-Schweda S, Holubarsch C. First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci (Lond). 2000;99(1):27–35.

    CAS  Google Scholar 

  96. Vicari RM, Chaitman B, Keefe D, Smith WB, Chrysant SG, Tonkon MJ, et al. Efficacy and safety of fasudil in patients with stable angina: a double-blind, placebo-controlled, phase 2 trial. J Am Coll Cardiol. 2005;46(10):1803–11.

    CAS  PubMed  Google Scholar 

  97. Noman A, Ang DSC, Ogston S, Lang CC, Struthers AD. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet. 2010;375(9732):2161–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. McGillion M, Cook A, Victor JC, Carroll S, Weston J, Teoh K, et al. Effectiveness of percutaneous laser revascularization therapy for refractory angina. Vasc Health Risk Manag. 2010;6:735–47.

    PubMed  PubMed Central  Google Scholar 

  99. Konigstein M, Giannini F, Banai S. The Reducer device in patients with angina pectoris: mechanisms, indications, and perspectives. Eur Heart J. 2018;39(11):925–33.

    PubMed  Google Scholar 

  100. Verheye S, Jolicœur EM, Behan MW, Pettersson T, Sainsbury P, Hill J, et al. Efficacy of a device to narrow the coronary sinus in refractory angina. N Engl J Med. 2015;372(6):519–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Giannini F, Palmisano A, Baldetti L, Benedetti G, Ponticelli F, Rancoita PMV, et al. Patterns of regional myocardial perfusion following coronary sinus reducer implantation: insights by stress cardiac magnetic resonance. Circ Cardiovasc Imaging. 2019;12:e009148.

    PubMed  PubMed Central  Google Scholar 

  102. Fukumoto Y, Ito A, Uwatoku T, Matoba T, Kishi T, Tanaka H, et al. Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Coron Artery Dis. 2006;17(1):63–70.

    PubMed  Google Scholar 

  103. Ahlbom M, Hagerman I, Ståhlberg M, Manouras A, Förstedt G, Wu E, et al. Increases in cardiac output and oxygen consumption during enhanced external counterpulsation. Heart Lung Circ. 2016;25(11):1133–6.

    PubMed  Google Scholar 

  104. Qin X, Deng Y, Wu D, Yu L, Huang R. Does enhanced external counterpulsation (EECP) significantly affect myocardial perfusion?: a systematic review & meta-analysis. PLoS One. 2016;11(4):e0151822.

    PubMed  PubMed Central  Google Scholar 

  105. Gallone G, Baldetti L, Tzanis G, Gramegna M, Latib A, Colombo A, et al. Refractory angina: from pathophysiology to new therapeutic nonpharmacological technologies. JACC Cardiovasc Interv. 2020;13(1):1–19.

    PubMed  Google Scholar 

  106. Khan AR, Farid TA, Pathan A, Tripathi A, Ghafghazi S, Wysoczynski M, et al. Impact of cell therapy on myocardial perfusion and cardiovascular outcomes in patients with angina refractory to medical therapy: a systematic review and meta-analysis. Circ Res. 2016;118(6):984–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Henry TD, Losordo DW, Traverse JH, Schatz RA, Jolicoeur EM, Schaer GL, et al. Autologous CD34+ cell therapy improves exercise capacity, angina frequency and reduces mortality in no-option refractory angina: a patient-level pooled analysis of randomized double-blinded trials. Eur Heart J. 2018;39(23):2208–16.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Azzalini.

Ethics declarations

Conflict of interest

Dr. Azzalini reports personal fees from Teleflex and Abiomed, outside the submitted work.

The other authors have no conflicts of interest to declare that are relevant to the content of this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myocardial Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroni, F., Gertz, Z. & Azzalini, L. Relief of Ischemia in Ischemic Cardiomyopathy. Curr Cardiol Rep 23, 80 (2021). https://doi.org/10.1007/s11886-021-01520-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01520-4

Keywords

Navigation