Skip to main content

Advertisement

Log in

Effect of SGLT2 Inhibitors on the Sympathetic Nervous System and Blood Pressure

Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Hyperactivity of sympathetic nervous system (SNS) plays a role in the development of arterial hypertension and heart failure, two co-morbidities frequently associated with type 2 diabetes (T2DM). This review aims at analyzing the effects of sodium-glucose cotransporter type 2 inhibitors (SGLT2is) on blood pressure and more especially on SNS activity in patients with T2DM.

Recent Findings

By enhancing glucosuria, natriuresis, and osmotic diuresis, SGLT2is improve glucose control, promote weight loss, lower arterial blood pressure, and reduce the risk of major cardiovascular events and hospitalization for heart failure. No rise of heart rate is detected despite reductions in blood pressure and plasma volume, which may suggest a dampening of SNS activity. Indeed, increasing experimental and clinical data demonstrated a reduction in SNS activity, including in key target organs such as the heart and the kidneys.

Summary

Of potential major interest, a better understanding of the mechanisms linking SGLT2 and SNS deserves further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vecchione C, Argenziano L, Fratta L, et al. Sympathetic nervous system and hypertension in diabetic patients. Diabetes Nutr Metab. 2000;13:327–31.

    CAS  PubMed  Google Scholar 

  2. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116:976–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33:1058–66.

    CAS  PubMed  Google Scholar 

  4. Toschi-Dias E, Rondon M, Cogliati C, et al. Contribution of autonomic reflexes to the hyperadrenergic state in heart failure. Front Neurosci. 2017;11:162.

    PubMed  PubMed Central  Google Scholar 

  5. van Bilsen M, Patel HC, Bauersachs J, Böhm M, Borggrefe M, Brutsaert D, et al. The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the translational research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2017;19:1361–78.

    PubMed  Google Scholar 

  6. Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet. 2012;380:601–10.

    PubMed  Google Scholar 

  7. Ofstad AP, Atar D, Gullestad L, Langslet G, Johansen OE. The heart failure burden of type 2 diabetes mellitus-a review of pathophysiology and interventions. Heart Fail Rev. 2018;23:303–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ortega-Loubon C, Fernandez-Molina M, Singh G, et al. Obesity and its cardiovascular effects. Diabetes Metab Res Rev. 2019;35:e3135.

    PubMed  Google Scholar 

  9. Lim K, Jackson KL, Sata Y, Head GA. Factors responsible for obesity-related hypertension. Curr Hypertens Rep. 2017;19:53.

    PubMed  Google Scholar 

  10. Schlaich M, Straznicky N, Lambert E, Lambert G. Metabolic syndrome: a sympathetic disease? Lancet Diabetes Endocrinol. 2015;3:148–57.

    PubMed  Google Scholar 

  11. Huggett RJ, Scott EM, Gilbey SG, Stoker JB, Mackintosh AF, Mary DASG. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation. 2003;108:3097–101.

    CAS  PubMed  Google Scholar 

  12. Masuo K, Rakugi H, Ogihara T, Esler M, Lambert G. Cardiovascular and renal complications of type 2 diabetes in obesity: role of sympathetic nerve activity and insulin resistance. Curr Diabetes Rev. 2010;6:58–67.

    CAS  PubMed  Google Scholar 

  13. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75:33–59.

    CAS  PubMed  Google Scholar 

  14. Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8:262–75 e9.

    CAS  PubMed  Google Scholar 

  15. Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18:783–94.

    CAS  PubMed  Google Scholar 

  16. • Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017;6:e004007 This systematic review of prospective studies shows that treatment with SGLT2 inhibitors has beneficial off-target effects on blood pressure in patients with type 2 diabetes mellitus.

    PubMed  PubMed Central  Google Scholar 

  17. • Baker WL, Buckley LF, Kelly MS, et al. Effects of sodium-glucose cotransporter 2 inhibitors on 24-hour ambulatory blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6:e005686 According to this meta-analysis, the diurnal effect of SGLT2 inhibitors on 24-hour ambulatory blood pressure is a class effect and may contribute to their favorable effects on cardiovascular outcomes.

    PubMed  PubMed Central  Google Scholar 

  18. Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation. 2017;136:1643–58.

    CAS  PubMed  Google Scholar 

  19. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    CAS  PubMed  Google Scholar 

  20. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

    CAS  PubMed  Google Scholar 

  21. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57.

    CAS  PubMed  Google Scholar 

  22. •• Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393:31–9 SGLT2i-associated moderate benefits on atherosclerotic major adverse cardiovascular events in patients with established atherosclerotic disease, but robust benefits on reducing hospitalisation for heart failure and progression of renal disease regardless of existing atherosclerotic disease or a history of heart failure.

    CAS  PubMed  Google Scholar 

  23. Scheen AJ. Reduction in cardiovascular and all-cause mortality in the EMPA-REG OUTCOME trial: a critical analysis. Diabetes Metab. 2016;42:71–6.

    PubMed  Google Scholar 

  24. Ferrannini E. Sodium-glucose co-transporters and their inhibition: clinical physiology. Cell Metab. 2017;26:27–38.

    CAS  PubMed  Google Scholar 

  25. Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60:215–25.

    CAS  PubMed  Google Scholar 

  26. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61:2108–17.

    CAS  PubMed  Google Scholar 

  27. Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018;94:26–39.

    CAS  PubMed  Google Scholar 

  28. Scheen AJ. Reappraisal of the diuretic effect of empagliflozin in EMPA-REG OUTCOME: comparison with classic diuretics. Diabetes Metab. 2016;42:224–33.

    CAS  PubMed  Google Scholar 

  29. Grassi G. Sympathetic and baroreflex function in hypertension: implications for current and new drugs. Curr Pharm Des. 2004;10:3579–89.

    CAS  PubMed  Google Scholar 

  30. Rabbia F, Martini G, Cat Genova G, et al. Antihypertensive drugs and sympathetic nervous system. Clin Exp Hypertens. 2001;23:101–11.

    CAS  PubMed  Google Scholar 

  31. Wan N, Rahman A, Hitomi H, Nishiyama A. The effects of sodium-glucose cotransporter 2 inhibitors on sympathetic nervous activity. Front Endocrinol (Lausanne). 2018;9:421.

    Google Scholar 

  32. Perret-Guillaume C, Joly L, Benetos A. Heart rate as a risk factor for cardiovascular disease. Prog Cardiovasc Dis. 2009;52:6–10.

    PubMed  Google Scholar 

  33. Hillis GS, Woodward M, Rodgers A, Chow CK, Li Q, Zoungas S, et al. Resting heart rate and the risk of death and cardiovascular complications in patients with type 2 diabetes mellitus. Diabetologia. 2012;55:1283–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Scheen AJ. Cardiovascular outcome studies in type 2 diabetes: comparison between SGLT2 inhibitors and GLP-1 receptor agonists. Diabetes Res Clin Pract. 2018;143:88–100.

    CAS  PubMed  Google Scholar 

  35. Lorenz M, Lawson F, Owens D, Raccah D, Roy-Duval C, Lehmann A, et al. Differential effects of glucagon-like peptide-1 receptor agonists on heart rate. Cardiovasc Diabetol. 2017;16:6.

    PubMed  PubMed Central  Google Scholar 

  36. Scheen AJ. Effects of reducing blood pressure on cardiovascular outcomes and mortality in patients with type 2 diabetes: focus on SGLT2 inhibitors and EMPA-REG OUTCOME. Diabetes Res Clin Pract. 2016;121:204–14.

    CAS  PubMed  Google Scholar 

  37. Oliva RV, Bakris GL. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens. 2014;8:330–9.

    CAS  PubMed  Google Scholar 

  38. Maliha G, Townsend RR. SGLT2 inhibitors: their potential reduction in blood pressure. J Am Soc Hypertens. 2015;9:48–53.

    CAS  PubMed  Google Scholar 

  39. Imprialos KP, Sarafidis PA, Karagiannis AI. Sodium-glucose cotransporter-2 inhibitors and blood pressure decrease: a valuable effect of a novel antidiabetic class? J Hypertens. 2015;33:2185–97.

    CAS  PubMed  Google Scholar 

  40. Townsend RR, Machin I, Ren J, Trujillo A, Kawaguchi M, Vijapurkar U, et al. Reductions in mean 24-hour ambulatory blood pressure after 6-week treatment with canagliflozin in patients with type 2 diabetes mellitus and hypertension. J Clin Hypertens (Greenwich). 2016;18:43–52.

    CAS  Google Scholar 

  41. Weir MR, Januszewicz A, Gilbert RE, Vijapurkar U, Kline I, Fung A, et al. Effect of canagliflozin on blood pressure and adverse events related to osmotic diuresis and reduced intravascular volume in patients with type 2 diabetes mellitus. J Clin Hypertens (Greenwich). 2014;16:875–82.

    CAS  Google Scholar 

  42. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15:853–62.

    CAS  PubMed  Google Scholar 

  43. Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol. 2016;4:211–20.

    CAS  PubMed  Google Scholar 

  44. Sjostrom CD, Johansson P, Ptaszynska A, et al. Dapagliflozin lowers blood pressure in hypertensive and non-hypertensive patients with type 2 diabetes. Diab Vasc Dis Res. 2015;12:352–8.

    PubMed  Google Scholar 

  45. Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38:420–8.

    CAS  PubMed  Google Scholar 

  46. Zhao D, Liu H, Dong P. Empagliflozin reduces blood pressure and uric acid in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Hum Hypertens. 2019;33:327–39.

    CAS  PubMed  Google Scholar 

  47. Amin NB, Wang X, Mitchell JR, Lee DS, Nucci G, Rusnak JM. Blood pressure-lowering effect of the sodium glucose co-transporter-2 inhibitor ertugliflozin, assessed via ambulatory blood pressure monitoring in patients with type 2 diabetes and hypertension. Diabetes Obes Metab. 2015;17:805–8.

    CAS  PubMed  Google Scholar 

  48. Kashiwagi A, Yoshida S, Kawamuki K, Nakamura I, Kazuta K, Ueyama E, et al. Effects of ipragliflozin, a selective sodium-glucose co-transporter 2 inhibitor, on blood pressure in Japanese patients with type 2 diabetes mellitus: a pooled analysis of six randomized, placebo-controlled clinical trials. Diabetol Int. 2017;8:76–86.

    PubMed  Google Scholar 

  49. Scheen AJ, Delanaye P. Effects of reducing blood pressure on renal outcomes in patients with type 2 diabetes: focus on SGLT2 inhibitors and EMPA-REG OUTCOME. Diabetes Metab. 2017;43:99–109.

    CAS  PubMed  Google Scholar 

  50. Takenaka T, Ohno Y, Suzuki H. Impacts of sodium-glucose co-transporter type 2 inhibitors on central blood pressure. Diab Vasc Dis Res. 2018;15:154–7.

    CAS  PubMed  Google Scholar 

  51. Ott C, Jumar A, Striepe K, Friedrich S, Karg MV, Bramlage P, et al. A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation. Cardiovasc Diabetol. 2017;16:26.

    PubMed  PubMed Central  Google Scholar 

  52. Kario K, Okada K, Kato M, Nishizawa M, Yoshida T, Asano T, et al. 24-hour blood pressure-lowering effect of an SGLT-2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: results from the randomized, placebo-controlled SACRA study. Circulation. 2018;published on line;139:2089–97. https://doi.org/10.1161/CIRCULATIONAHA.118.037076.

    Article  CAS  PubMed Central  Google Scholar 

  53. Tamura K, Wakui H, Azushima K, Uneda K, Umemura S. Circadian blood pressure rhythm as a possible key target of SGLT2 inhibitors used for the treatment of type 2 diabetes. Hypertens Res. 2016;39:396–8.

    CAS  PubMed  Google Scholar 

  54. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17:1180–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Heerspink HJ, Johnsson E, Gause-Nilsson I, et al. Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin-angiotensin blockers. Diabetes Obes Metab. 2016;18:590–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mancia G, Cannon CP, Tikkanen I, Zeller C, Ley L, Woerle HJ, et al. Impact of empagliflozin on blood pressure in patients with type 2 diabetes mellitus and hypertension by background antihypertensive medication. Hypertension. 2016;68:1355–64.

    CAS  PubMed  Google Scholar 

  57. Scheen AJ. Type 2 diabetes and thiazide diuretics. Curr Diab Rep. 2018;18:6.

    PubMed  Google Scholar 

  58. Kimura T, Sanada J, Shimoda M, Hirukawa H, Fushimi Y, Nishioka M, et al. Switching from low-dose thiazide diuretics to sodium-glucose cotransporter 2 inhibitor improves various metabolic parameters without affecting blood pressure in patients with type 2 diabetes and hypertension. J Diabetes Investig. 2018;9:875–81.

    CAS  PubMed  Google Scholar 

  59. Komici K, Femminella GD, de Lucia C, Cannavo A, Bencivenga L, Corbi G, et al. Predisposing factors to heart failure in diabetic nephropathy: a look at the sympathetic nervous system hyperactivity. Aging Clin Exp Res. 2019;31:321–30.

    PubMed  Google Scholar 

  60. Scheen AJ. Pharmacokinetics, pharmacodynamics and clinical use of SGLT2 inhibitors in patients with type 2 diabetes and chronic kidney disease. Clin Pharmacokinet. 2015;54:691–708.

    CAS  PubMed  Google Scholar 

  61. Kohan DE, Fioretto P, Tang W, List JF. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85:962–71.

    CAS  PubMed  Google Scholar 

  62. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. CREDENCE trial investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306.

    CAS  PubMed  Google Scholar 

  63. Ferdinand KC, Izzo JL, Lee J, Meng L, George J, Salsali A, et al. Antihyperglycemic and blood pressure effects of empagliflozin in African Americans with type 2 diabetes and hypertension. Circulation. 2019;139:2098–109.

    CAS  PubMed  Google Scholar 

  64. Cai X, Gao X, Yang W, Chen Y, Zhang S, Zhou L, et al. No disparity of the efficacy and all-cause mortality between Asian and non-Asian type 2 diabetes patients with sodium-glucose cotransporter 2 inhibitors treatment: a meta-analysis. J Diabetes Investig. 2018;9:850–61.

    CAS  PubMed  Google Scholar 

  65. Reed JW. Impact of sodium-glucose cotransporter 2 inhibitors on blood pressure. Vasc Health Risk Manag. 2016;12:393–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Briasoulis A, Al Dhaybi O, Bakris GL. SGLT2 inhibitors and mechanisms of hypertension. Curr Cardiol Rep. 2018;20(1):1.

    PubMed  Google Scholar 

  67. Kawasoe S, Maruguchi Y, Kajiya S, Uenomachi H, Miyata M, Kawasoe M, et al. Mechanism of the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharmacol Toxicol. 2017;18:23.

    PubMed  PubMed Central  Google Scholar 

  68. Lee PC, Ganguly S, Goh SY. Weight loss associated with sodium-glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms. Obes Rev. 2018;19:1630–41.

    CAS  PubMed  Google Scholar 

  69. Zomer E, Gurusamy K, Leach R, Trimmer C, Lobstein T, Morris S, et al. Interventions that cause weight loss and the impact on cardiovascular risk factors: a systematic review and meta-analysis. Obes Rev. 2016;17:1001–11.

    CAS  PubMed  Google Scholar 

  70. Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2003;42:878–84.

    CAS  PubMed  Google Scholar 

  71. Sjostrom CD, Hashemi M, Sugg J, et al. Dapagliflozin-induced weight loss affects 24-week glycated haemoglobin and blood pressure levels. Diabetes Obes Metab. 2015;17:809–12.

    CAS  PubMed  Google Scholar 

  72. Rajasekeran H, Lytvyn Y, Cherney DZ. Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. Kidney Int. 2016;89:524–6.

    CAS  PubMed  Google Scholar 

  73. McMurray J. EMPA-REG - the “diuretic hypothesis”. J Diabetes Complicat. 2016;30:3–4.

    Google Scholar 

  74. Heise T, Jordan J, Wanner C, Heer M, Macha S, Mattheus M, et al. Acute pharmacodynamic effects of empagliflozin with and without diuretic agents in patients with type 2 diabetes mellitus. Clin Ther. 2016;38:2248–64 e5.

    CAS  PubMed  Google Scholar 

  75. Yasui A, Lee G, Hirase T, Kaneko T, Kaspers S, von Eynatten M, et al. Empagliflozin induces transient diuresis without changing long-term overall fluid balance in Japanese patients with type 2 diabetes. Diabetes Ther. 2018;9:863–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tanaka H, Takano K, Iijima H, Kubo H, Maruyama N, Hashimoto T, et al. Factors affecting canagliflozin-induced transient urine volume increase in patients with type 2 diabetes mellitus. Adv Ther. 2017;34:436–51.

    CAS  PubMed  Google Scholar 

  77. Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018;61:2098–107.

    CAS  PubMed  Google Scholar 

  78. Solini A, Giannini L, Seghieri M, Vitolo E, Taddei S, Ghiadoni L, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol. 2017;16:138.

    PubMed  PubMed Central  Google Scholar 

  79. Ramirez AJ, Sanchez MJ, Sanchez RA. Diabetic patients with essential hypertension treated with amlodipine: blood pressure and arterial stiffness effects of canagliflozin or perindopril. J Hypertens. 2019;37:636–42.

    CAS  PubMed  Google Scholar 

  80. van Ittersum FJ, Schram MT. Van der Heijden-Spek JJ, et al. autonomic nervous function, arterial stiffness and blood pressure in patients with type I diabetes mellitus and normal urinary albumin excretion. J Hum Hypertens. 2004;18:761–8.

    PubMed  Google Scholar 

  81. Cherney DZ, Perkins BA, Soleymanlou N, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014;13:28.

    PubMed  PubMed Central  Google Scholar 

  82. Ansary TM, Nakano D, Nishiyama A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci. 2019;20:pii: E629.

    Google Scholar 

  83. • Jordan J, Tank J, Heusser K, Heise T, Wanner C, Heer M, et al. The effect of empagliflozin on muscle sympathetic nerve activity in patients with type II diabetes mellitus. J Am Soc Hypertens. 2017;11:604–12 This experimental study showed that empagliflozin is not associated with clinically relevant reflex-mediated sympathetic activation in contrast to increases observed with diuretics in other studies.

    CAS  PubMed  Google Scholar 

  84. •• Matthews VB, Elliot RH, Rudnicka C, Hricova J, Herat L, Schlaich MP. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J Hypertens. 2017;35:2059–68 In-vitro and in-vivo studies showed an important cross-talk between the sympathetic nervous system and SGLT2 regulation that may potentially contribute to cardiovascular and renal protection observed with SGLT2 inhibitors.

    CAS  PubMed  Google Scholar 

  85. Elliott RH, Matthews VB, Rudnicka C, Schlaich MP. Is it time to think about the sodium glucose co-transporter 2 sympathetically? Nephrology. 2016;21:286–94.

    CAS  PubMed  Google Scholar 

  86. •• Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018;71:471–6 This review discusses novel insights into cardiovascular protection by SGLT2is, focusing on the interaction between SGLT2 and the sympathetic nervous system in diabetic patients with hypertension or heart failure.

    PubMed  Google Scholar 

  87. Kiuchi S, Hisatake S, Kabuki T, Fujii T, Oka T, Dobashi S, et al. Long-term use of ipragliflozin improved cardiac sympathetic nerve activity in a patient with heart failure: a case report. Drug Discov Ther. 2018;12:51–4.

    PubMed  Google Scholar 

  88. Vasiliadis I, Kolovou G, Mavrogeni S, Nair DR, Mikhailidis DP. Sudden cardiac death and diabetes mellitus. J Diabetes Complicat. 2014;28:573–9.

    CAS  Google Scholar 

  89. Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac innervation and sudden cardiac death. Circ Res. 2015;116:2005–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kubota Y, Yamamoto T, Tara S, Tokita Y, Yodogawa K, Iwasaki Y, et al. Effect of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: rationale. Diabetes Ther. 2018;9:2107–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Avogaro A, Fadini GP. Microvascular complications in diabetes: a growing concern for cardiologists. Int J Cardiol. 2019;published on line. https://doi.org/10.1016/j.ijcard.2019.02.030.

    PubMed  Google Scholar 

  92. Kaur J, Young BE, Fadel PJ. Sympathetic overactivity in chronic kidney disease: consequences and mechanisms. Int J Mol Sci. 2017;18:E1682.

    PubMed  Google Scholar 

  93. Masi S, Uliana M, Virdis A. Angiotensin II and vascular damage in hypertension: role of oxidative stress and sympathetic activation. Vasc Pharmacol. 2019;115:13–7.

    CAS  Google Scholar 

  94. Pop-Busui R, Kirkwood I, Schmid H, Marinescu V, Schroeder J, Larkin D, et al. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol. 2004;44:2368–74.

    CAS  PubMed  Google Scholar 

  95. Arden GB, Sivaprasad S. Hypoxia and oxidative stress in the causation of diabetic retinopathy. Curr Diabetes Rev. 2011;7:291–304.

    CAS  PubMed  Google Scholar 

  96. Valensi P, Smagghue O, Paries J, et al. Peripheral vasoconstrictor responses to sympathetic activation in diabetic patients: relationship with rheological disorders. Metabolism. 1997;46:235–41.

    CAS  PubMed  Google Scholar 

  97. Herat LY, Matthews VB, Rakoczy PE, et al. Focusing on sodium glucose cotransporter-2 and the sympathetic nervous system: potential impact in diabetic retinopathy. Int J Endocrinol. 2018;2018:9254126.

    PubMed  PubMed Central  Google Scholar 

  98. Lambert EA, Rice T, Eikelis N, Straznicky NE, Lambert GW, Head GA, et al. Sympathetic activity and markers of cardiovascular risk in nondiabetic severely obese patients: the effect of the initial 10% weight loss. Am J Hypertens. 2014;27:1308–15.

    CAS  PubMed  Google Scholar 

  99. Costa J, Moreira A, Moreira P, Delgado L, Silva D. Effects of weight changes in the autonomic nervous system: a systematic review and meta-analysis. Clin Nutr. 2019;38:110–26.

    PubMed  Google Scholar 

  100. Nicoll R, Henein MY. Caloric restriction and its effect on blood pressure, heart rate variability and arterial stiffness and dilatation: a review of the evidence. Int J Mol Sci. 2018;19:E751.

    PubMed  Google Scholar 

  101. Landsberg L. Insulin resistance, energy balance and sympathetic nervous system activity. Clin Exp Hypertens A. 1990;12:817–30.

    CAS  PubMed  Google Scholar 

Download references

Funding

This paper was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André J. Scheen.

Ethics declarations

Conflict of Interest

No conflicts of interest are directly relevant to the content of this manuscript.

A.J. Scheen has received lecturer/advisor fees from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck Sharp & Dohme, Novartis, NovoNordisk, Sanofi, and Servier. He also worked as clinical investigator in the three cardiovascular outcome trials with SGLT2 inhibitors, EMPA-REG-OUTCOME, CANVAS-R, and DECLARE-TIMI 58.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheen, A.J. Effect of SGLT2 Inhibitors on the Sympathetic Nervous System and Blood Pressure. Curr Cardiol Rep 21, 70 (2019). https://doi.org/10.1007/s11886-019-1165-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1165-1

Keywords

Navigation