Skip to main content

Advertisement

Log in

Ultrasound Molecular Imaging: Principles and Applications in Cardiovascular Medicine

  • Echocardiography (JM Gardin and AH Waller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Non-invasive molecular imaging is currently used as a research technique to better understand disease pathophysiology. There are also many potential clinical applications where molecular imaging may provide unique information that allows either earlier or more definitive diagnosis, or can guide precision medicine-based decisions on therapy. Contrast-enhanced ultrasound (CEU) with targeted microbubble contrast agents is one such technique that has been developed that has the unique properties of providing rapid information and revealing information only on events that occur within the vascular space.

Recent Findings

CEU molecular probes have been developed for a wide variety of disease states including atherosclerosis, vascular inflammation, thrombosis, tumor neovascularization, and ischemic injury. While the technique has not yet been adapted to clinical use, it has been used to reveal pathological processes, to identify new therapeutic targets, and to test the efficacy of novel treatments.

Summary

This review will explore the physical basis for CEU molecular imaging, its strengths and limitations compared to other molecular imaging modalities, and the pre-clinical translational research experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Osborn EA, Jaffer FA. The advancing clinical impact of molecular imaging in CVD. JACC Cardiovasc Imaging. 2013;6(12):1327–41. https://doi.org/10.1016/j.jcmg.2013.09.014.

    Article  PubMed  Google Scholar 

  2. Chen Z-Y, Wang Y-X, Lin Y, Zhang J-S, Yang F, Zhou Q-L, et al. Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. Biomed Res Int. 2014;2014:1–12. https://doi.org/10.1155/2014/819324.

    Article  CAS  Google Scholar 

  3. Lindner JR, Sinusas A. Molecular imaging in cardiovascular disease: which methods, which diseases? J Nucl Cardiol. 2013;20(6):990–1001. https://doi.org/10.1007/s12350-013-9785-0.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Keelan ET, Harrison AA, Chapman PT, Binns RM, Peters AM, Haskard DO. Imaging vascular endothelial activation: an approach using radiolabeled monoclonal antibodies against the endothelial cell adhesion molecule E-selectin. J Nucl Med : official publication, Society of Nuclear Medicine. 1994;35(2):276–81.

    CAS  Google Scholar 

  5. Vaidyanathan S, Patel CN, Scarsbrook AF, Chowdhury FU. FDG PET/CT in infection and inflammation--current and emerging clinical applications. Clin Radiol. 2015;70(7):787–800. https://doi.org/10.1016/j.crad.2015.03.010.

    Article  CAS  PubMed  Google Scholar 

  6. Lindner JR, Song J, Jayaweera AR, Sklenar J, Kaul S. Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr. 2002;15(5):396–403. https://doi.org/10.1067/mje.2002.117290.

    Article  PubMed  Google Scholar 

  7. Kaufmann BA, Wei K, Lindner JR. Contrast echocardiography. Curr Probl Cardiol. 2007;32(2):51–96. https://doi.org/10.1016/j.cpcardiol.2006.10.004.

    Article  PubMed  Google Scholar 

  8. Jong ND, Frinking P, Cate FT, Wouw PVD, editors. Characteristics of contrast agents and 2D imaging. IEEE Ultrasonics Symposium. Proceedings; 1996 3–6 1996.

  9. Overvelde M, Garbin V, Sijl J, Dollet B, de Jong N, Lohse D, et al. Nonlinear shell behavior of phospholipid-coated microbubbles. Ultrasound Med Biol. 2010;36(12):2080–92. https://doi.org/10.1016/j.ultrasmedbio.2010.08.015.

    Article  PubMed  Google Scholar 

  10. Shi WT, Forsberg F, Tornes A, Ostensen J, Goldberg BB. Destruction of contrast microbubbles and the association with inertial cavitation. Ultrasound Med Biol. 2000;26(6):1009–19.

    Article  CAS  Google Scholar 

  11. Burns PN. Harmonic imaging with ultrasound contrast agents. Clin Radiol. 1996;51(SUPPL. 1):50–5.

    PubMed  Google Scholar 

  12. Burns PN, Powers JE, Simpson DH, Brezina A, Kolin A, Chin CT et al., editors. Harmonic power mode Doppler using microbubble contrast agents: an improved method for small vessel flow imaging. 1994 Proceedings of IEEE Ultrasonics Symposium; 1994 31 1994.

  13. Simpson DH, Chien Ting C, Burns PN. Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(2):372–82. https://doi.org/10.1109/58.753026.

    Article  CAS  PubMed  Google Scholar 

  14. Paefgen V, Doleschel D, Kiessling F. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol. 2015;6:197. https://doi.org/10.3389/fphar.2015.00197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ismail S, Jayaweera AR, Camarano G, Gimple LW, Powers ER, Kaul S. Relation between air-filled albumin microbubble and red blood cell rheology in the human myocardium. Influence of echocardiographic systems and chest wall attenuation. Circulation. 1996;94(3):445–51.

    Article  CAS  Google Scholar 

  16. Du H, Chandaroy P, Hui SW. Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochim Biophys Acta Biomembr. 1997;1326(2):236–48. https://doi.org/10.1016/S0005-2736(97)00027-8.

    Article  CAS  Google Scholar 

  17. Fisher NG, Christiansen JP, Klibanov A, Taylor RP, Kaul S, Lindner JR. Influence of microbubble surface charge on capillary transit and myocardial contrast enhancement. J Am Coll Cardiol. 2002;40(4):811–9. https://doi.org/10.1016/S0735-1097(02)02038-7.

    Article  CAS  PubMed  Google Scholar 

  18. Chen CC, Borden MA. Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles. Langmuir. 2010;26(16):13183–94. https://doi.org/10.1021/la101796p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Senior R, Becher H, Monaghan M, Agati L, Zamorano J, Vanoverschelde JL, et al. Clinical practice of contrast echocardiography: recommendation by the European Association of Cardiovascular Imaging (EACVI) 2017. Eur Heart J Cardiovasc Imaging. 2017;18(11):1205–af. https://doi.org/10.1093/ehjci/jex182.

    Article  PubMed  Google Scholar 

  20. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97(5):473–83.

    Article  CAS  Google Scholar 

  21. Kaul S, Kelly P, Oliner JD, Glasheen WP, Keller MW, Watson DD. Assessment of regional myocardial blood flow with myocardial contrast two-dimensional echocardiography. J Am Coll Cardiol. 1989;13(2):468–82. https://doi.org/10.1016/0735-1097(89)90528-7.

    Article  CAS  PubMed  Google Scholar 

  22. Lindner JR, Song J, Xu F, Klibanov AL, Singbartl K, Ley K, et al. Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation. 2000;102(22):2745–50.

    Article  CAS  Google Scholar 

  23. Anderson DR, Tsutsui JM, Xie F, Radio SJ, Porter TR. The role of complement in the adherence of microbubbles to dysfunctional arterial endothelium and atherosclerotic plaque. Cardiovasc Res. 2007;73(3):597–606. https://doi.org/10.1016/j.cardiores.2006.11.029.

    Article  CAS  PubMed  Google Scholar 

  24. Yanagisawa K, Moriyasu F, Miyahara T, Yuki M, Iijima H. Phagocytosis of ultrasound contrast agent microbubbles by Kupffer cells. Ultrasound Med Biol. 2007;33(2):318–25. https://doi.org/10.1016/j.ultrasmedbio.2006.08.008.

    Article  PubMed  Google Scholar 

  25. Chen CC, Borden MA. The role of poly(ethylene glycol) brush architecture in complement activation on targeted microbubble surfaces. Biomaterials. 2011;32(27):6579–87. https://doi.org/10.1016/j.biomaterials.2011.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. • Mott B, Packwood W, Xie A, Belcik JT, Taylor RP, Zhao Y, et al. Echocardiographic ischemic memory imaging through complement-mediated vascular adhesion of phosphatidylserine-containing microbubbles. JACC Cardiovasc Imaging. 2016;9(8):937–46. https://doi.org/10.1016/j.jcmg.2015.11.031 This study provides validation for the use of a clinically approved CEU agent (Sonazoid) in detection of prior ischemia in a canine model of closed-chest myocardial infarction.

    Article  PubMed  Google Scholar 

  27. Lindner JR, Song J, Christiansen J, Klibanov AL, Xu F, Ley K. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation. 2001;104(17):2107–12. https://doi.org/10.1161/hc4201.097061.

    Article  CAS  PubMed  Google Scholar 

  28. Unger EC, McCreery TP, Sweitzer RH, Shen D, Wu G. In vitro studies of a new thrombus-specific ultrasound contrast agent. Am J Cardiol. 1998;81(12, Supplement 1):58G–61G. https://doi.org/10.1016/S0002-9149(98)00055-1.

    Article  CAS  PubMed  Google Scholar 

  29. Klibanov AL, Gu H, Wojdyla JK, Wible JH, Kim DH, Needham D et al. Attachment of ligands to gas-filled microbubbles via PEG spacer and lipid residues anchored at the interface. Proceedings of 26th International Symposium on Controlled Release of Bioactive Materials. 1999;124–5.

  30. Takalkar AM, Klibanov AL, Rychak JJ, Lindner JR, Ley K. Binding and detachment dynamics of microbubbles targeted to P-selectin under controlled shear flow. J Control Release : official journal of the Controlled Release Society. 2004;96(3):473–82. https://doi.org/10.1016/j.jconrel.2004.03.002.

    Article  CAS  Google Scholar 

  31. Ferrante EA, Pickard JE, Rychak J, Klibanov A, Ley K. Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. J Control Release : official journal of the Controlled Release Society. 2009;140(2):100–7. https://doi.org/10.1016/j.jconrel.2009.08.001.

    Article  CAS  Google Scholar 

  32. Behm CZ, Lindner JR. Cellular and molecular imaging with targeted contrast ultrasound. Ultrasound Q. 2006;22(1):67–72.

    PubMed  Google Scholar 

  33. Carr CL, Qi Y, Davidson B, Chadderdon S, Jayaweera AR, Belcik JT, et al. Dysregulated selectin expression and monocyte recruitment during ischemia-related vascular remodeling in diabetes mellitus. Arterioscler Thromb Vasc Biol. 2011;31(11):2526–33. https://doi.org/10.1161/ATVBAHA.111.230177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Truillet C, Oh HLJ, Yeo SP, Lee CY, Huynh LT, Wei J, et al. Imaging PD-L1 expression with immunoPET. Bioconjug Chem. 2018;29(1):96–103. https://doi.org/10.1021/acs.bioconjchem.7b00631.

    Article  CAS  PubMed  Google Scholar 

  35. Weller GER, Villanueva FS, Klibanov AL, Wagner WR, editors. Shear modulates adhesion of ultrasound contrast microbubbles targeted to dysfunctional endothelium. Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology; 2002 23–26 2002.

  36. Alie N, Eldib M, Fayad ZA, Mani V. Inflammation, atherosclerosis, and coronary artery disease: PET/CT for the evaluation of atherosclerosis and inflammation. Clin Med Insights Cardiol. 2014;8(Suppl 3):13–21. https://doi.org/10.4137/cmc.S17063.

    Article  PubMed  Google Scholar 

  37. Klein C, Schmal TR, Nekolla SG, Schnackenburg B, Fleck E, Nagel E. Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. J Cardiovasc Magn Reson : official journal of the Society for Cardiovascular Magnetic Resonance. 2007;9(4):653–8. https://doi.org/10.1080/10976640601105614.

    Article  Google Scholar 

  38. Winter PM, Caruthers SD, Lanza GM, Wickline SA. Quantitative cardiovascular magnetic resonance for molecular imaging. J Cardiovasc Magn Reson : official journal of the Society for Cardiovascular Magnetic Resonance. 2010;12:62. https://doi.org/10.1186/1532-429x-12-62.

    Article  Google Scholar 

  39. Kurt M, Shaikh KA, Peterson L, Kurrelmeyer KM, Shah G, Nagueh SF, et al. Impact of contrast echocardiography on evaluation of ventricular function and clinical management in a large prospective cohort. J Am Coll Cardiol. 2009;53(9):802–10. https://doi.org/10.1016/j.jacc.2009.01.005.

    Article  PubMed  Google Scholar 

  40. Goldberg YH, Ginelli P, Siegel R, Ostfeld RJ, Schaefer M, Spevack DM. Administration of perflutren contrast agents during transthoracic echocardiography is not associated with a significant increase in acute mortality risk. Cardiology. 2012;122(2):119–25. https://doi.org/10.1159/000338731.

    Article  CAS  PubMed  Google Scholar 

  41. Platts DG, Luis SA, Roper D, Burstow D, Call T, Forshaw A, et al. The safety profile of perflutren microsphere contrast echocardiography during rest and stress imaging: results from an Australian multicentre cohort. Heart Lung Circ. 2013;22(12):996–1002. https://doi.org/10.1016/j.hlc.2013.05.637.

    Article  PubMed  Google Scholar 

  42. Liu YN, Khangura J, Xie A, Belcik JT, Qi Y, Davidson BP, et al. Renal retention of lipid microbubbles: a potential mechanism for flank discomfort during ultrasound contrast administration. J Am Soc Echocardiogr. 2013;26(12):1474–81. https://doi.org/10.1016/j.echo.2013.08.004.

    Article  PubMed  Google Scholar 

  43. Brieger D, Eagle KA, Goodman SG, Steg PG, Budaj A, White K, et al. Acute coronary syndromes without chest pain, an underdiagnosed and undertreated high-risk group: insights from the Global Registry of Acute Coronary Events. Chest. 2004;126(2):461–9. https://doi.org/10.1378/chest.126.2.461.

    Article  PubMed  Google Scholar 

  44. Pope JH, Aufderheide TP, Ruthazer R, Woolard RH, Feldman JA, Beshansky JR, et al. Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med. 2000;342(16):1163–70. https://doi.org/10.1056/nejm200004203421603.

    Article  CAS  PubMed  Google Scholar 

  45. Neumann J, Sörensen N, Schwemer T, et al. Diagnosis of myocardial infarction using a high-sensitivity troponin i 1-hour algorithm. JAMA Cardiol. 2016;1(4):397–404. https://doi.org/10.1001/jamacardio.2016.0695.

    Article  PubMed  Google Scholar 

  46. Sandoval Y, Apple FS, Smith SW. High-sensitivity cardiac troponin assays and unstable angina. Eur Heart J Acute Cardiovasc Care. 2016;7(2):120–8. https://doi.org/10.1177/2048872616658591.

    Article  PubMed  Google Scholar 

  47. Davidson BP, Kaufmann BA, Belcik JT, Xie A, Qi Y, Lindner JR. Detection of antecedent myocardial ischemia with multiselectin molecular imaging. J Am Coll Cardiol. 2012;60(17):1690–7. https://doi.org/10.1016/j.jacc.2012.07.027.

    Article  CAS  PubMed  Google Scholar 

  48. Villanueva FS, Lu E, Bowry S, Kilic S, Tom E, Wang J, et al. Myocardial ischemic memory imaging with molecular echocardiography. Circulation. 2007;115(3):345–52. https://doi.org/10.1161/circulationaha.106.633917.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Davidson BP, Chadderdon SM, Belcik JT, Gupta S, Lindner JR. Ischemic memory imaging in nonhuman primates with echocardiographic molecular imaging of selectin expression. J Am Soc Echocardiogr : official publication of the American Society of Echocardiography. 2014;27(7):786–93.e2. https://doi.org/10.1016/j.echo.2014.03.013.

    Article  Google Scholar 

  50. Jones SP, Trocha SD, Strange MB, Granger DN, Kevil CG, Bullard DC, et al. Leukocyte and endothelial cell adhesion molecules in a chronic murine model of myocardial reperfusion injury. Am J Physiol Heart Circ Physiol. 2000;279(5):H2196–201.

    Article  CAS  Google Scholar 

  51. Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dipchand AI, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-first official adult heart transplant report--2014; focus theme: retransplantation. J Heart Lung Transplant : the official publication of the International Society for Heart Transplantation. 2014;33(10):996–1008. https://doi.org/10.1016/j.healun.2014.08.003.

    Article  Google Scholar 

  52. Weller GE, Lu E, Csikari MM, Klibanov AL, Fischer D, Wagner WR, et al. Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation. 2003;108(2):218–24. https://doi.org/10.1161/01.Cir.0000080287.74762.60.

    Article  PubMed  Google Scholar 

  53. • Liu J, Chen Y, Wang G, Lv Q, Yang Y, Wang J, et al. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes. Biomaterials. 2018;162:200–7. https://doi.org/10.1016/j.biomaterials.2018.02.017 This study demonstrates the use of CEU molecular imaging in detecting early cases of cardiac transplant rejection by targeting infiltrating T lymphocytes.

    Article  CAS  PubMed  Google Scholar 

  54. • Steinl DC, Xu L, Khanicheh E, Ellertsdottir E, Ochoa-Espinosa A, Mitterhuber M, et al. Noninvasive contrast-enhanced ultrasound molecular imaging detects myocardial inflammatory response in autoimmune myocarditis. Circ Cardiovasc Imaging. 2016;9(8):e004720. https://doi.org/10.1161/circimaging.116.004720 This article describes CEU detection of endothelial activation and leukocute recruitment in a murine model of myocarditis using P-selectin and CD4 targeted as well as phosphatidylserine microbubbles.

    Article  PubMed  Google Scholar 

  55. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009;27(1):165–97. https://doi.org/10.1146/annurev.immunol.021908.132620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu MD, Atkinson TM, Lindner JR. Platelets and von Willebrand factor in atherogenesis. Blood. 2017;129(11):1415–9. https://doi.org/10.1182/blood-2016-07-692673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fernández-Ortiz A, Jiménez-Borreguero LJ, Peñalvo JL, Ordovás JM, Mocoroa A, Fernández-Friera L, et al. The Progression and Early detection of Subclinical Atherosclerosis (PESA) study: rationale and design. Am Heart J. 2013;166(6):990–8. https://doi.org/10.1016/j.ahj.2013.08.024.

    Article  PubMed  Google Scholar 

  58. Blankenberg S, Zeller T, Saarela O, Havulinna AS, Kee F, Tunstall-Pedoe H, et al. Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation. 2010;121(22):2388–97. https://doi.org/10.1161/circulationaha.109.901413.

    Article  PubMed  Google Scholar 

  59. Canto JG, Kiefe CI, Rogers WJ, Peterson ED, Frederick PD, French WJ, et al. Number of coronary heart disease risk factors and mortality in patients with first myocardial infarction. JAMA. 2011;306(19):2120–7. https://doi.org/10.1001/jama.2011.1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Falk E, Sillesen H, Muntendam P, Fuster V. The high-risk plaque initiative: primary prevention of atherothrombotic events in the asymptomatic population. Curr Atheroscler Rep. 2011;13(5):359–66. https://doi.org/10.1007/s11883-011-0193-0.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kaufmann BA, Carr CL, Belcik JT, Xie A, Yue Q, Chadderdon S, et al. Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease. Arterioscler Thromb Vasc Biol. 2010;30(1):54–9. https://doi.org/10.1161/ATVBAHA.109.196386.

    Article  CAS  PubMed  Google Scholar 

  62. Moguillansky D, Leng X, Carson A, Lavery L, Schwartz A, Chen X, et al. Quantification of plaque neovascularization using contrast ultrasound: a histologic validation. Eur Heart J. 2011;32(5):646–53. https://doi.org/10.1093/eurheartj/ehq197.

    Article  PubMed  Google Scholar 

  63. Liu Y, Davidson BP, Yue Q, Belcik T, Xie A, Inaba Y, et al. Molecular imaging of inflammation and platelet adhesion in advanced atherosclerosis: effects of antioxidant therapy with NADPH oxidase inhibition. Circ Cardiovasc Imaging. 2013;6:74–82.

    Article  Google Scholar 

  64. Kee PH, Kim H, Huang S, Laing ST, Moody MR, Vela D, et al. Nitric oxide pretreatment enhances atheroma component highlighting in vivo with intercellular adhesion molecule-1-targeted echogenic liposomes. Ultrasound Med Biol. 2014;40(6):1167–76. https://doi.org/10.1016/j.ultrasmedbio.2013.12.013.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Moccetti F, Weinkauf CC, Davidson BP, Belcik JT, Marinelli ER, Unger E, et al. Ultrasound molecular imaging of atherosclerosis using small-peptide targeting ligands against endothelial markers of inflammation and oxidative stress. Ultrasound Med Biol. 2018;44(6):1155–63. https://doi.org/10.1016/j.ultrasmedbio.2018.01.001.

    Article  PubMed  Google Scholar 

  66. Chadderdon SM, Belcik JT, Bader L, Kirigiti MA, Peters DM, Kievit P, et al. Proinflammatory endothelial activation detected by molecular imaging in obese nonhuman primates coincides with onset of insulin resistance and progressively increases with duration of insulin resistance. Circulation. 2014;129(4):471–8. https://doi.org/10.1161/circulationaha.113.003645.

    Article  CAS  PubMed  Google Scholar 

  67. Shim CY, Liu YN, Atkinson T, Xie A, Foster T, Davidson BP, et al. Molecular imaging of platelet-endothelial interactions and endothelial von Willebrand factor in early and mid-stage atherosclerosis. Circ Cardiovasc Imaging. 2015;8(7):e002765. https://doi.org/10.1161/CIRCIMAGING.114.002765.

    Article  PubMed  Google Scholar 

  68. Brown E, Belcik JT, Hodovan JM, Moccetti F, Ozawa K, Bader LA et al. Platelet-endothelial interactions in atherosclerosis-prone arteries in a non-human primate model of obesity and insulin resistance. Vascular Discovery: From Genes to Medicine Scientific Sessions 2018; San Francisco 2018. p. 17.

  69. Khanicheh E, Mitterhuber M, Xu L, Haeuselmann SP, Kuster GM, Kaufmann BA. Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis. PLoS One. 2013;8(3):e58761. https://doi.org/10.1371/journal.pone.0058761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. • Moccetti F, Brown E, Xie A, Packwood W, Qi Y, Ruggeri Z, et al. Myocardial infarction produces sustained proinflammatory endothelial activation in remote arteries. J Am Coll Cardiol. 2018;72(9):1015–26. https://doi.org/10.1016/j.jacc.2018.06.044 This study describes how CEU molecular imaging was used to better understand the roles of platelet adhesion and endothelial activation in response to myocardial ischemia, and showed a potential use for the targeted anti-oxidant apocynin in reducing risk for future ischemic events.

    Article  CAS  PubMed  Google Scholar 

  71. Lindner JR. Molecular imaging of thrombus: technology in evolution. Circulation. 2012;125(25):3057–9. https://doi.org/10.1161/CIRCULATIONAHA.112.112672.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lanza GM, Wallace KD, Scott MJ, Cacheris WP, Abendschein DR, Christy DH, et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation. 1996;94(12):3334–40.

    Article  CAS  Google Scholar 

  73. Alonso A, Della Martina A, Stroick M, Fatar M, Griebe M, Pochon S, et al. Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound. Stroke. 2007;38(5):1508–14. https://doi.org/10.1161/strokeaha.106.471391.

    Article  CAS  PubMed  Google Scholar 

  74. Xie F, Lof J, Matsunaga T, Zutshi R, Porter TR. Diagnostic ultrasound combined with glycoprotein 2b/3a targeted microbubbles improve microvascular recovery following acute coronary thrombotic occlusions. Circulation. 2009;119(10):1378–85. https://doi.org/10.1161/CIRCULATIONAHA.108.825067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Christiansen JP, Leong-Poi H, Klibanov AL, Kaul S, Lindner JR. Noninvasive imaging of myocardial reperfusion injury using leukocyte-targeted contrast echocardiography. Circulation. 2002 Apr 16;105(15):1764–7.

    Article  Google Scholar 

Download references

Funding

Mr. Brown is supported by grant 18PRE33960532 from the American Heart Association; Dr. Lindner is supported by grants R01-HL078610, R01-HL120046, and P51-OD011092 from the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Lindner.

Ethics declarations

Conflict of Interest

Eran Brown grants from American Heart Association (Grant: 18PRE33960532).

Jonathan R. Lindner reports grants from GE Lifesciences.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, E., Lindner, J.R. Ultrasound Molecular Imaging: Principles and Applications in Cardiovascular Medicine. Curr Cardiol Rep 21, 30 (2019). https://doi.org/10.1007/s11886-019-1117-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1117-9

Keywords

Navigation